matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesIdeale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - Ideale
Ideale < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ideale: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:11 Di 10.06.2008
Autor: Esra

Aufgabe
Sei R ein kommutativer Ring mit 1. Ein Element r [mm] \in [/mm] R heißt nilpotent, wenn es ein n [mm] \ge [/mm] 1 gibt, so daß [mm] r^{n}=0. [/mm] Zeigen Sie, dass die Menge aller nilpotenten Elemente ein Ideal von R bilden.  

Hallo Leute,


also  ich habe zunächst große Probleme hier mit Ideale und nilpotente Elemente,
wie muss ich hier vorgehen?? kann mir da jemand weiter helfen??
es wäre echt nett, weil ich blicke nicht mehr durch.
die Eigenschaften von ideale ist mir bekannt nur wie zeige ich es mit der Menge aller nilpotenten Elementen???
irgentwie komisch!!

bis später...
danke im Vorraus

        
Bezug
Ideale: Antwort
Status: (Antwort) fertig Status 
Datum: 21:03 Di 10.06.2008
Autor: vju

Hallo,
Ich würde hier erstmal die Menge der Nilpotenten Elemente definieren, welche das Ideal bilden soll. Ich schreibe dir sie mal auf.

Sei M := {r [mm] \in \IR [/mm] | [mm] \exists [/mm] n [mm] \in \IN: r^n [/mm] = 0}

Jetzt sind hier zwei Dinge zu zeigen.

1. M ist eine additive abelsche Gruppe
2. [mm] \forall [/mm] r [mm] \in [/mm] M und  [mm] \lambda \in \IR [/mm] : [mm] \lambda [/mm] r [mm] \in [/mm] M

Vielleicht hilft es dir ja bischen weiter.

Liebe Grüße

~ Vju

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]