matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionInduktion1
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Induktion" - Induktion1
Induktion1 < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktion1: Induktion
Status: (Frage) beantwortet Status 
Datum: 13:46 Mi 16.11.2016
Autor: b.reis

Aufgabe
Zeigen Sie, dass für alle [mm] x\in\IR [/mm] , x [mm] \ge [/mm] -1 und für alle [mm] n\in\IN [/mm] gilt: [mm] (1+x)^n \ge [/mm] 1+nx

Hallo

ich bin mir nicht ganz sicher wie ich an diese Aufgabe heran gehen soll.

Hier meine Ansätze:


[mm] (1+x)^{n+1} \ge [/mm] 1+(n+1)x

=

[mm] (1+x)^{n}* [/mm] (1+x) [mm] \ge [/mm] 1+nx+x

hier kann ich nichts mehr tun und außerdem habe ich die Induktion für alle x .... nicht mit berücksichtigt

wenn ich das mache dann sieht das ganze so aus:

[mm] (1+(x+1))^{n}* [/mm] (1+(x+1)) [mm] \ge [/mm] 1+n(x+1)+(x+1)


=

[mm] (2+x)^n [/mm] * (2+x) [mm] \ge [/mm] 1+nx+n+x+1

=

[mm] (2+x)^n [/mm] * (2+x) [mm] \ge [/mm] 2+2nx

Vielleicht müsste auch eine Fallunterscheidung für das x gemacht werden, aber ich wollte erstmal fragen ob mein Ansatz richtig ist und ob es für einen meiner Ansätze noch eine Lösung gibt.


Vielen Dank

Benni

        
Bezug
Induktion1: Antwort
Status: (Antwort) fertig Status 
Datum: 14:17 Mi 16.11.2016
Autor: fred97


Du bist auf dem falschen Dampfer !

x ist fest und  [mm] \ge [/mm] 1. Zeigen sollst Du:

  [mm] (1+x)^n \ge [/mm] 1+nx für jedes n [mm] \in \IN. [/mm]

Bewiesen wird das mit Induktion nach n.

Der Induktionsanfang, also der Fall n=1, ist klar.

Induktionsvoraussetzung: sei n [mm] \in \IN [/mm] und  (*) [mm] (1+x)^n \ge [/mm] 1+nx.

n [mm] \to [/mm] n+1: wenn wir (*) mit x+1 multiplizieren , bekommen wir

   [mm] (1+x)^{n+1} \ge [/mm] (1+nx)(1+x),

beachte, dass x [mm] \ge [/mm] 1, also x+1 [mm] \ge [/mm] 0 ist !

Es folgt:

    [mm] (1+x)^{n+1} \ge (1+nx)(1+x)=1+x+nx+nx^2. [/mm]

Da [mm] nx^2 \ge [/mm] 0, liefert dies

    [mm] (1+x)^{n+1} \ge [/mm] 1+nx+x=1+(n+1)x.

>
> Vielen Dank
>
> Benni


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]