matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitInjektive stetige Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stetigkeit" - Injektive stetige Funktionen
Injektive stetige Funktionen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Injektive stetige Funktionen: Idee
Status: (Frage) beantwortet Status 
Datum: 12:43 Do 07.01.2010
Autor: MatheMaexchen

Aufgabe
Es seien a,b [mm] \in \IR, [/mm] a<b, und f:[a,b] [mm] \to\IR [/mm] eine stetige Funktion. Beweisen Sie: Wenn f injektiv ist, dass ist f entweder streng monton wachsend oder streng monton fallend.

Hey ihr alle,

ich finde das vom logischen her total klar warum diese implikation gelten muss, umgekehrt gilt sie ja auch, aber ich weiß nich wie ich das beweisen kann...
also ich kenn die definition von injektivität [mm] (f(x)=f(y)\Rightarrow [/mm] x=y), von stetigkeit [mm] (\forall \varepsilon>0 \exists\delta>0:|x-x_{0}|<\delta \Rightarrow |f(x)-f(x_{0}|<\varepsilon [/mm] ) und natürlich die von monoton steigend und monton fallend.
ich weiß das ich folgendes zeigen muss: (f(x)=f(y) [mm] \Rightarrow [/mm] x=y) [mm] \Rightarrow [/mm] (x<y [mm] \Rightarrow [/mm] (f(x)>f(y) [mm] \vee [/mm] f(x)>f(y)))

aber wie mach ich das???
ich hab echt keinen ansatz.
wäre total super wenn ihr mir weiterhelfen könntet.

ganz liebe grüße
MatheMäxchen

        
Bezug
Injektive stetige Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:52 Do 07.01.2010
Autor: AT-Colt

Ich würde einen Widerspruchsbeweis versuchen. Angenommen, $f$ ist stetig und injektiv, aber nicht streng monoton. Was folgt dann daraus?

Bezug
                
Bezug
Injektive stetige Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:12 Fr 08.01.2010
Autor: MatheMaexchen

hey,
danke erstmal für die schnelle antwort.
nur bringt sie mich leider nicht wirklich weiter, denn ich hab ja "vorne" also das was gegeben ist, das selbe, muss nur auf etwas anderes kommen. mein problem ist ja das ganze irgendwie anders zu schreiben das ich es umformen kann und im enteffekt auf monotonie oder halt nicht (widerspruchsbeweis) komme.

viele liebe grüße
Mathemäxchen

Bezug
                        
Bezug
Injektive stetige Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:26 Fr 08.01.2010
Autor: angela.h.b.


> hey,
>  danke erstmal für die schnelle antwort.
>  nur bringt sie mich leider nicht wirklich weiter, denn ich
> hab ja "vorne" also das was gegeben ist, das selbe, muss
> nur auf etwas anderes kommen. mein problem ist ja das ganze
> irgendwie anders zu schreiben das ich es umformen kann und
> im enteffekt auf monotonie oder halt nicht
> (widerspruchsbeweis) komme.

Hallo,

eine echte Meisterleistung der Formulierungskunst...

Ich weiß aus dieser Story jetzt nicht, was Du getan hast und wo Dein Problem lag.

Nun denn:

zu zeigen:

[mm] f:[a,b]\to \IR [/mm] injektiv  und stetig  ==> f ist  streng monoton.

Beweis durch Widerspruch:

Da f injektiv ist, ist [mm] f(a)\not=f(b). [/mm]

Sei oBdA f(a)<f(b).

Angenommen, f wäre nicht monoton.

Dann gibt es ein [mm] x_0\in [/mm] [a,b] mit  ... usw.

Versuch jetzt mal.


Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]