matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenInjektivität, Surjektivität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Injektivität, Surjektivität
Injektivität, Surjektivität < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Injektivität, Surjektivität: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:47 Di 07.11.2006
Autor: xsara

Aufgabe
Man entscheide, ob die folgenden Funktionen injektiv / surjektiv / bijektiv sind (Beweis oder Gegenbeispiel). Im Falle der Bijektivität gebe man außerdem die Umkehrfunktion an.
(1)  f: [mm] \IQ \to \IQ, [/mm]   f(x):=ax+b mit a [mm] \in \IQ [/mm] \ {0} und b [mm] \in \IQ. [/mm]
(2)  f: [mm] \IR \to \IR, f(x):=x|x|=\begin{cases} x^2, & \mbox{falls } x \ge 0 \\ -x^2, & \mbox{falls } x<0 \end{cases} [/mm]
(3)  f: [mm] \IQ \to \IZ, f(\bruch{n}{m}):=n+m [/mm]  für [mm] \bruch{n}{m} \in \IQ [/mm] mit n [mm] \in \IZ [/mm] und m [mm] \in \IN, [/mm] n,m teilerfremd.

Wie muss ein Beweis aussehen?
Laut Definition muss ich für Injektivität einer Abbildung f: A [mm] \to [/mm] B zeigen, dass [mm] \forall [/mm] x,y [mm] \in [/mm] A, x [mm] \not= [/mm] y [mm] \Rightarrow [/mm] f(x) [mm] \not= [/mm] f(y), und für Surjektivität, dass [mm] \forall [/mm] b [mm] \in [/mm] B [mm] \exists [/mm] a [mm] \in [/mm] A: f(a)=b.

Zu (1) habe ich mir überlegt, dass für [mm] x_1, x_2 \in \IQ [/mm] mit [mm] x_1 \not= x_2 \Rightarrow f(x_1) \not= f(x_2), [/mm] also [mm] ax_1+b \not= ax_2+b. [/mm] Ist damit die Injektivität schon gezeigt? Wie müsste ich diesen Beweis "ordnungsgemäß" aufschreiben?
Weiter habe ich mir überlegt, dass für Surjektivität gelten muss, dass y=f(x). Langt es zu sagen, dass y [mm] \in \IQ [/mm] und definierey:=f(x) [mm] \Rightarrow [/mm] y=ax+b [mm] \forall [/mm] x [mm] \in \IQ? [/mm]
Die Umkehrfunktion müsste doch [mm] f^{-1} (y)=\bruch{x-b}{a} [/mm] heißen.

Zu (2): auch diese Funktion ist bijektiv. Kann man die Umkehrfunktion wie folgt angeben?
[mm] f^{-1} (y)=\wurzel{x}=\begin{cases} +\wurzel{x}, & \mbox{für } x \ge 0 \\ -\wurzel{x}, & \mbox{für } x < 0 \end{cases} [/mm]

Zu (3) habe ich leider keine Idee.

Vielen Dank!

        
Bezug
Injektivität, Surjektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 21:01 Di 07.11.2006
Autor: Sashman

Moin xsara!

Spilen wir das Ganze mal an Teilaufgabe (1) durch:


Für den Beweis der Injektivität solltest du dir die alternative Definition der Injektivität zu nutze machen.

[mm] \underline{injektiv}: [/mm]

$f$ ist injektiv [mm] $\gdw$ [/mm] aus [mm] $f(x_1)=f(x_2)$ $x_1=x_2$ [/mm] folgt

und das ist einfacher zu zeigen.

[mm] $f(x_1)=f(x_2)$ $\gdw$ $ax_1+b=ax_2+b$ $\gdw$ $x_1=x_2$ [/mm]

also ist $f$ injektiv.

[mm] \underline{surjektiv} [/mm]

stellen wir dazu $y=ax+b$ nach $x$ um also [mm] $x=\frac{y-b}{a}$ [/mm]  dann gilt:

[mm] $f(x)=a*\frac{y-b}{a}+b=y$ [/mm]    dies ist jedoch nur eine Nebenrechnung zum eigentlichen Beweis - der geht dann so:

Sei [mm] $y\in\IQ$ [/mm] beliebig. Setze [mm] $x:=\frac{y-b}{a}$. [/mm] Dann liegt $x$ in [mm] \IQ [/mm] und es gilt:
[mm] $$f(x)=a*\frac{y-b}{a}+b=y$$ [/mm]
Zu jedem [mm] $y\in\IQ$ [/mm] gibt es also ein [mm] $x\in\IQ$ [/mm] mit $f(x)=y$, und somit ist $f$ surjektiv.

[mm] \underline{bijektiv} [/mm]

$f$ ist bijektiv, da $f$ injektiv und surjektiv ist.

[mm] \underline{Umkehrfunktion} [/mm]

[mm] f^{-1}(x)=\frac{x-b}{a} [/mm]

zu (3) f ist auf gar keinen Fall injektiv da:
$$ [mm] f(\frac{3}{2})=f(\frac{2}{3}) \text{ aber }\frac{3}{2}\not=\frac{2}{3}$$ [/mm]

MfG
Sashman

Bezug
        
Bezug
Injektivität, Surjektivität: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:29 Sa 11.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]