matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikInklusion-Exklusion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Diskrete Mathematik" - Inklusion-Exklusion
Inklusion-Exklusion < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inklusion-Exklusion: Anwendung
Status: (Frage) überfällig Status 
Datum: 11:24 Fr 02.03.2012
Autor: clemenum

Aufgabe
Wie viele $n-$stellige (natürliche) Zahlen existieren, die 0,1,2 nicht enthalten, jedoch aber 3,4,5.

Nun, seien dazu:
[mm] $N_1 [/mm] = [mm] \{ $ n-stellige Zahlen, die 0,1,2 enthalten $\}$ [/mm]
[mm] $N_2 [/mm] =  [mm] \{ $ n-stellige Zahlen, die 3,4,5 enthalten $\}$ [/mm]
[mm] $N_3 [/mm] =  [mm] \{ $ n-stellige Zahlen, die 6,7,8,9 enthalten $\}$ [/mm]

Das Ergebnis müsste nun so lautet:
[mm] $|N_1 \cap N_3 [/mm] | - [mm] |N_1 \cap N_2| [/mm] - [mm] |N_1 \cap N_3| [/mm] $
Ich bin mir aber nicht sicher, ob ich noch etwas übersehen habe, jedenfalls ist klar, dass ich die Menge suche, die NUR Elemente aus [mm] $N_1$ [/mm] und [mm] $N_3$ [/mm] enthält.

So, jetzt muss ich mir doch - um das Ergebnis quantifizieren zu können - die Frage stellen: Wie viele $n-$stelligen Zahlen gibt es, die o.B.d.A. durch (mindestens) aus den Ziffern 3,4,5 bestehen?
Nun, am Anfang hab ich für den 3er $n$-Plätze frei, dann für den 4er $n-1$ und schließlich $n-2$ für den 5er.
Nun, am Anfang dachte ich mir, es müsse (deshalb) $n(n-1)(n-2)$ (Variation ohne Wiederholung) sein, doch ist mir dann aufgefallen, dass diese Zahl weit zu gering ist.
Klar ist mir nur, dass es genau [mm] $10^n$ [/mm] n-stellige Zahlen gibt.  
Das Problem ist ja, dass ich diese 3 Zahlen beliebig auf $n$ Zahlen verteile, das macht die Anzahl erheblich größer als meine erste Vermutung.
Nun, meine jetzige Idee dazu ist: Wenn ich eine bestimmte Anordnung von den 3-Zahlen habe, dann habe ich von den restlichen $n-3$ Zahlen ja $(n-3)! $ Vertauschungsmöglichkeiten. Und da es 3! Möglichkeiten gibt diese 3 Zahlen anzuordnen, müsste es nun $3! + (n-3)!$ Möglichkeiten geben.

Kann mir jemand einen Tipp geben, wie ich meinen Ansatz berichtigen könnte?







        
Bezug
Inklusion-Exklusion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 So 04.03.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]