matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeutsche Mathe-OlympiadeInkreisaufgabe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Deutsche Mathe-Olympiade" - Inkreisaufgabe
Inkreisaufgabe < Deutsche MO < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Deutsche Mathe-Olympiade"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inkreisaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:22 Do 18.08.2011
Autor: KingStone007

Hallo, es geht um die dritte Aufgabe des folgenden Wettbewerbs:
[]41.Matheolympiade 3. Stufe

Ich habe leider kaum einen Ansatz wie ich an diese Aufgabe rangehen sollte. Habt ihr vllt eine Idee?

Lg, David

        
Bezug
Inkreisaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:48 Do 18.08.2011
Autor: reverend

Hallo David,

mach erstmal eine Skizze, und probiere es umgekehrt:

(oops, meine 1. Version war gerade Unsinn. Hier nochmal neu):

1) Wenn die beiden Inkreise der Teildreiecke sich berühren sollen, dann schneidet die Gerade durch die beiden Mittelpunkte die Strecke [mm] \overline{CD} [/mm] genau senkrecht. Bestimme daraus die Lage von Punkt D.

2) Bestimme den Berührpunkt des Inkreises von [mm] \triangle{ABC} [/mm] (wobei eine Spiegelung an der Winkelhalbierenden von [mm] \alpha [/mm] hilfreich ist), und zeige, dass er mit D identisch ist.

Ich lasse die Frage teilweise offen, falls noch jemand eine elegantere Idee hat. ;-)

Viel Erfolg,
reverend


Bezug
        
Bezug
Inkreisaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:03 Sa 20.08.2011
Autor: Leopold_Gast

Die Seiten des Dreiecks [mm]ABC[/mm] sind Tangenten des Inkreises. Daher ist die Entfernung von [mm]A[/mm] zu den Berührpunkten des Inkreises mit den Strecken [mm]AB[/mm] bzw. [mm]AC[/mm] dieselbe. Nennen wir diese [mm]u[/mm]. Die entsprechenden Strecken von [mm]B[/mm] bzw. [mm]C[/mm] aus mögen [mm]v,w[/mm] heißen. Aus dem linearen Gleichungssystem

[mm]u+v = c \, , \ \ v+w = a \, , \ \ w+u = b[/mm]

lassen sich [mm]u,v,w[/mm] ermitteln. Wir brauchen nur

(*)  [mm]u = \frac{1}{2} \left( -a+b+c \right)[/mm]

Jetzt sei [mm]D[/mm] auf der Strecke [mm]AB[/mm] gewählt, so daß [mm]AD[/mm] die Länge [mm]t[/mm] und [mm]BD[/mm] die Länge [mm]c-t[/mm] hat. Die Länge der Strecke [mm]CD[/mm] heiße [mm]p[/mm]. Der Berührpunkt des Inkreises von [mm]ADC[/mm] mit [mm]CD[/mm] sei [mm]S[/mm], der Berührpunkt des Inkreises von [mm]BDC[/mm] mit [mm]CD[/mm] sei [mm]T[/mm].

1. Wir wenden (*) auf das Dreieck mit den Ecken [mm]A'= D, \, B' = C, \, C'= A[/mm] an. Gib damit die Länge [mm]u'[/mm] der Strecke [mm]DS[/mm] in Abhängigkeit von [mm]a,b,c,t,p[/mm] an.

2. Wir wenden (*) auf das Dreieck mit den Ecken [mm]A'' = D, \, B'' = C, \, C'' = B[/mm] an. Gib damit die Länge [mm]u''[/mm] der Strecke [mm]DT[/mm] in Abhängigkeit von [mm]a,b,c,t,p[/mm] an.

3. Dann gilt: [mm]S = T \ \ \Leftrightarrow \ \ u' = u''[/mm]. Und jetzt ist nur noch die Äquivalenz der letzten Bedingung mit [mm]t = u[/mm] nachzuweisen. Einfach ausrechnen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Deutsche Mathe-Olympiade"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]