matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungIntegral mit e funktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitsrechnung" - Integral mit e funktion
Integral mit e funktion < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral mit e funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:25 Di 23.09.2014
Autor: chris...

Aufgabe
Sie würfeln 300-mal und protokollieren die Anzahl der sechsen. In welchem zum erwartungswert symmetrischen Bereich fällt die Anzahl der sechsen mit 99,7%- iger Wahrscheinlichkeit

Hey, ich versuche gerade in der wahrscheinlichkeitsrechnung  , keine taschenrechnerbefehle wie binompdf,... Zu benutzen. Zunächst habe ich  deshalb aus der Aufgabe geschlussfolgert:
1. Erwartungswert: 50
2. [mm] \summe_{i=x}^{y} [/mm] ((300über [mm] x)*((1/6)^x)*(1-(1/6)^{300-x})) [/mm]
3. 50-x= -(50-y)
--> 100-x= y
4. x kleiner gleich 50;  y größer gleich 50
Da ich mit der summenformel jedoch nicht auf die x Werte ohne weiteres kam, habe ich versucht mit einem integral zu rechnen:
5. [mm] \integral_{0}^{300}{f(x) dx} [/mm] das Ergebnis würde ich dann =100% setzen
Um dadurch den flächeninhalt  der =99.7%  entspricht zu berechnen. Und daraus x zu berechnen.Um zunächst jedoch erstmal das intervall 0-300 zu errechnen, habe ich die Formel:
(1/(σ [mm] \wurzel{2\pi}))*e^{(-1/2)*((x-p)/ σ )^2} [/mm]
σ= 6.454972244
Vereinfacht also:
[mm] 0.0618038723*e^{(-1/2)*((x-(1/6))/6.454972244)^2} [/mm]
Das habe ich weiter versucht zu vereinfachen:
0.0618038723*e^((-1/2 [mm] x^2)/(-0.83333333333)+0,0003) [/mm]
Um daraus folgend das integral von dieser Formel im interval 0-300 sowie:
6. [mm] \integral_{x}^{100-x}{f(x) dx} [/mm]
Zunehmen.
Leider komme ich hierbei jetzt nicht weiter, die e Formel aufzuleiten und würde mich deshalb sehr über Hilfe freuen...
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integral mit e funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:47 Di 23.09.2014
Autor: Diophant

Hallo,

> Sie würfeln 300-mal und protokollieren die Anzahl der
> sechsen. In welchem zum erwartungswert symmetrischen
> Bereich fällt die Anzahl der sechsen mit 99,7%- iger
> Wahrscheinlichkeit
> Hey, ich versuche gerade in der
> wahrscheinlichkeitsrechnung , keine taschenrechnerbefehle
> wie binompdf,... Zu benutzen.

Das ist löblich, aber nicht so einfach, wie du dir das vorstellst oder je nachdem was man unter Wahrscheinlichkeitsrechnung verstehen möchte schlechterdings unmöglich, da man bei Benutzung von Tabellen oder Näherungsverfahren im Prinzip auch nichts anders macht als das, was dem TR einprogrammiert ist.

> Zunächst habe ich deshalb
> aus der Aufgabe geschlussfolgert:
> 1. Erwartungswert: 50
> 2. [mm]\summe_{i=x}^{y}[/mm] ((300über
> [mm]x)*((1/6)^x)*(1-(1/6)^{300-x}))[/mm]
> 3. 50-x= -(50-y)
> --> 100-x= y
> 4. x kleiner gleich 50; y größer gleich 50
> Da ich mit der summenformel jedoch nicht auf die x Werte
> ohne weiteres kam, habe ich versucht mit einem integral zu
> rechnen:
> 5. [mm]\integral_{0}^{300}{f(x) dx}[/mm] das Ergebnis würde ich
> dann =100% setzen
> Um dadurch den flächeninhalt der =99.7% entspricht zu
> berechnen. Und daraus x zu berechnen.Um zunächst jedoch
> erstmal das intervall 0-300 zu errechnen, habe ich die
> Formel:
> (1/(σ [mm]\wurzel{2\pi}))*e^{(-1/2)*((x-p)/ σ )^2}[/mm]
> σ=
> 6.454972244
> Vereinfacht also:
> [mm]0.0618038723*e^{(-1/2)*((x-(1/6))/6.454972244)^2}[/mm]
> Das habe ich weiter versucht zu vereinfachen:
> 0.0618038723*e^((-1/2 [mm]x^2)/(-0.83333333333)+0,0003)[/mm]
> Um daraus folgend das integral von dieser Formel im
> interval 0-300 sowie:
> 6. [mm]\integral_{x}^{100-x}{f(x) dx}[/mm]
> Zunehmen.
> Leider komme ich hierbei jetzt nicht weiter, die e Formel
> aufzuleiten und würde mich deshalb sehr über Hilfe
> freuen...

Was ist aufleiten? Im Ernst: dieses Wort ist sprachlicher Nonsens auf unterirdischem Niveau und das wird nicht besser durch die Tatsache, dass es im schulischen Bereich immer häufiger gelehrt wird. Überlege dir dazu einmal, wie es zu der falschen Verwendung der Vorsilbe auf wohl gekommen ist.

Um auf dein Anliegen zurückzukommen: Dein Integrationsintervall müsste von 50-x bis 50+x gehen, das ist sonst verwirrend (auch wenn du mit deiner Notation ebenfalls einen zum Erwartungswert symmetrischen Bereich abdeckst). Das ganze scheitert an der Tatsache, dass die Funktion

[mm] f(x)=e^{-x^2} [/mm]

keine geschlossen darstellbare Stammfunktion besitzt. Man kann eine solche Stammfunktion nur durch unendliche Reihen ausdrücken oder ihr einen neuen Namen geben:

[mm] \int{e^{-x^2} dx}=\bruch{\wurzel{\pi}}{2}*erf(x)+C [/mm]

aber das macht die Sache auch nicht besser.

Wenn du das ganze nicht mit der Binomialverteilung sondern approximiert durch eine Normalverteilung bearbeiten möchtest dann arbeite mit der transformierten Zufallsvariablen

[mm] Z=\bruch{X-50}{\wurzel{125/3}} [/mm]

sowie einer Tabelle der Standardnormalverteilung. Alternativ kann man natürlich auch die im TR implementierte Normalverteilung benutzen, aber das war ja eben nicht dein Anliegen.

Ich verschiebe das ganze mal nach Stochastik, dort scheint es mir passender zu sein.


Gruß, Diophant 

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]