matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisIntegral über Residuensatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - Integral über Residuensatz
Integral über Residuensatz < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral über Residuensatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:03 So 26.02.2006
Autor: Maiko

Ich hätte mal eine Frage zur Bestimmung folgenden Integrals. Die Kurve C ist ein geschlossener Halbkreis, was mir ermöglicht, das Integral mit Hilfe  des Residuensatzes zu lösen:

[mm] \integral_{C}^{}{\frac{1}{z^4+1}dz} [/mm]

Es treten nur zwei Singularitäten auf, da die anderen beiden außerhalb der Kurve liegen.

[mm] z_1=\frac{\wurzel(2)}{2}+\frac{\wurzel(2)}{2}*i [/mm]
[mm] z_2=-\frac{\wurzel(2)}{2}+\frac{\wurzel(2)}{2}*i [/mm]

Nun zur Berechnungsformel für das erste Residuum:

[mm] Res(f,z_1)=\lim_{z \to z_1}[(z-(\frac{\wurzel{2}}{2}+\frac{\wurzel{2}}{2}*i))*\frac{1}{(z-(\frac{\wurzel{2}}{2}+ \frac{\wurzel{2}}{2}*i))*(z-(-\frac{\wurzel{2}}{2}+\frac{\wurzel{2}}{2}*i))* (z-(\frac{\wurzel{2}}{2}-\frac{\wurzel{2}}{2}*i))*(z-(-\frac{\wurzel{2}}{2}-\frac{\wurzel{2}}{2}*i))}] [/mm]

Nun kürzt sich hier etwas. Wenn ich allerdings den Grenzwert bilde, dann kommt ein undefinierter Ausdruck raus. Wo ist hier der Fehler? Sehe ihn heut nicht mehr?

        
Bezug
Integral über Residuensatz: Antwort
Status: (Antwort) fertig Status 
Datum: 12:33 Mo 27.02.2006
Autor: Leopold_Gast

Der einzige Fehler ist wohl, daß du einen Fehler in deiner Rechnung zu erkennen vermeintest. Die scheint aber richtig so. Mit deinen Bezeichnungen folgt:

[mm]\operatorname{Res} \left( f , z_1 \right) = \lim_{z \to z_1} \left( \left( z - z_1 \right) \cdot \frac{1}{\left( z - z_1 \right) \left( z + z_1 \right) \left( z - z_2 \right) \left( z + z_2 \right)} \right) = \frac{1}{2 z_1 \left( z_1 - z_2 \right) \left( z_1 + z_2 \right)} = \frac{1}{2 z_1 \left( z_1^2 - z_2^2 \right)}[/mm]

Und hier wird offensichtlich kein Faktor im Nenner 0, wie man dem vorletzten Ausdruck unmittelbar ansieht.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]