matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieIntegral von Betragsfunktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integrationstheorie" - Integral von Betragsfunktion
Integral von Betragsfunktion < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral von Betragsfunktion: Korrektur
Status: (Frage) beantwortet Status 
Datum: 21:42 Fr 01.07.2016
Autor: Pingumane

Aufgabe
Gegeben sei die Funktion f(x,y) = 3 - |x| - |y| und das Gebiet G = {(x, y) [mm] \in [/mm] R² : |x| + |y| [mm] \le [/mm] 3}.

a) Skizzieren Sie ds Gebiet G.
b) Berechnen Sie [mm] \integral_{}^{}\integral_{G}^{}{f(x, y) dG} [/mm]
c) Was haben Sie durch das Gebietsintegral in b) berechnet?

Guten Tag,

ich habe ein Problem beim Integrieren der Funktion. Aber erst einmal...

a) Skizziert. Erhalten habe ich ein Quadrat mit den Eckpunkten in (3, 0), (0, 3), (-3,0), (0, -3).

c) Berechnet wird das Volumen einer Pyramide mit h = 3 und erwähnter quadratischer Grundfläche.

Problem b):

Da das Gebiet G symmetrisch ist, kann ich das Integral einer Ecke berechnen und mit 4 multiplizieren. Ich nehme die Ecke im ersten Quadranten:

4 * [mm] \integral_{0}^{3}\integral_{0}^{-x+3}{3 - |x| - |y| dy dx} [/mm]

Und nun bleibe ich stecken. Wie integriere ich |y| nach y?

Meine Idee: y nimmt in dem Quadranten, den ich betrachte nur positive Werte an. Kann ich deshalb den Betrag auflösen und bilde das Integral von y? Falls die Annahme richtig ist, gilt das dann auch für x, richtig?

Mein Ergebnis mit dieser Annahme ist 18 und stimmt mit der Lösung überein.
Aber da ich nur die Lösung habe und keinen Lösungsweg, wollte ich mich erkundigen, ob meine Annahmen und deren Begründung richtig sind oder ich nur durch Zufall den richtigen Wert herausbekommen habe.


Liebe Grüße,
Pingumane

        
Bezug
Integral von Betragsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:41 Fr 01.07.2016
Autor: leduart

Hallo
Deine Annahme ist nur deshalb richtig, weil die Funktion , die du integrierst dieselbe Symmetrie hat wie dein Quadrat, d,h, auch die Funktionswerte an den entsprechenden Stellen sind gleich wenn du zu integrierende fkt etwa 3-x-y wäre könntest du so nicht rechnen,
Gruss leduart

Bezug
                
Bezug
Integral von Betragsfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:03 Sa 02.07.2016
Autor: Pingumane

Vielen lieben Dank für die Antwort :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]