matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegralberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Integralberechnung
Integralberechnung < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralberechnung: Idee
Status: (Frage) beantwortet Status 
Datum: 22:39 Fr 26.12.2008
Autor: matzew611

Aufgabe
[mm] \integral_{}^{}{artanh(\wurzel{x})dx} [/mm]

[mm] \integral_{}^{}{artanh(\wurzel{x})dx} [/mm]

= 1 [mm] \integral_{}^{}{artanh(\wurzel{x})dx} [/mm]


f(x) = x, f'(x) = 1, g(x) = artanh [mm] \wurzel{x}, [/mm] g'(x) = [mm] \bruch{1}{1-x} \bruch{1}{2\wurzel{x}} [/mm] = [mm] \bruch{1}{(1-x)2\wurzel{x}} [/mm]

I = x [mm] artanh\wurzel{x} [/mm] - [mm] \integral_{}^{}{x \bruch{1}{(1-x)2\wurzel{x}}dx} [/mm]


= [mm] xartanh\wurzel{x} [/mm] - [mm] \integral_{}^{}{\bruch{\wurzel{x}}{2-2x}dx} [/mm]


= [mm] xartanh\wurzel{x} [/mm] - [mm] \bruch{1}{2} \integral_{}^{}{\bruch{\wurzel{x}}{1-x}dx} [/mm]

Int1 = [mm] \integral_{}^{}{\bruch{\wurzel{x}}{1-x}dx} [/mm]

ist es bis dahin richtig? wie mache ich nun weiter? ich habe es mit der Substitution [mm] \wurzel{x} [/mm] = u, x = [mm] u^{2}, [/mm] dx = 2udu versucht, jedoch ohne Erfolg... ich habe dort versucht im Zähler die Ableitung vom Nenner reinzubekommen, da bleibt bei mir dann jedoch jedes mal ein produkt über..  

als Beispiel:

[mm] -\integral_{}^{}{\bruch{-2u}{1-u^{2}} u du} [/mm]

hat jemand eine Idee wie die Aufgabe zu lösen ist?

lg und frohen restlichen 2.weihnachtstag





        
Bezug
Integralberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:09 Fr 26.12.2008
Autor: schachuzipus

Hallo Matthias,

> [mm]\integral_{}^{}{artanh(\wurzel{x})dx}[/mm]
>  [mm]\integral_{}^{}{artanh(\wurzel{x})dx}[/mm]
>  
> = 1 [mm]\integral_{}^{}{artanh(\wurzel{x})dx}[/mm]
>  
>
> f(x) = x, f'(x) = 1, g(x) = artanh [mm]\wurzel{x},[/mm] g'(x) =
> [mm]\bruch{1}{1-x} \bruch{1}{2\wurzel{x}}[/mm] =
> [mm]\bruch{1}{(1-x)2\wurzel{x}}[/mm]
>  
> I = x [mm]artanh\wurzel{x}[/mm] - [mm]\integral_{}^{}{x \bruch{1}{(1-x)2\wurzel{x}}dx}[/mm]
>  
>
> = [mm]xartanh\wurzel{x}[/mm] -
> [mm]\integral_{}^{}{\bruch{\wurzel{x}}{2-2x}dx}[/mm]
>  
>
> = [mm]xartanh\wurzel{x}[/mm] - [mm]\bruch{1}{2} \integral_{}^{}{\bruch{\wurzel{x}}{1-x}dx}[/mm]

[ok]


>  
> ist es bis dahin richtig?

Ja, das sieht gut aus soweit!

> wie mache ich nun weiter? ich
> habe es mit der Substitution [mm]\wurzel{x}[/mm] = u, x = [mm]u^{2},[/mm] dx
> = 2udu versucht, jedoch ohne Erfolg... ich habe dort
> versucht im Zähler die Ableitung vom Nenner reinzubekommen,
> da bleibt bei mir dann jedoch jedes mal ein produkt über..  

Erst einmal würde ich das Minuszeichen noch aus dem Integral ziehen:

[mm] $...=x\cdot{}atanh(\sqrt{x})+\frac{1}{2}\cdot{}\int{\frac{\sqrt{x}}{x-1} \ dx}$ [/mm]

Nun schauen wir das hintere Integral näher an

Da sieht mir doch dein obiger Substitutionsansatz  [mm] $u:=\sqrt{x}$ [/mm] gut aus, oder?

Damit ist [mm] $\frac{du}{dx}=\frac{1}{2\sqrt{x}}$, [/mm] also [mm] $dx=2\sqrt{x} [/mm] \ du=2u \ du$

Setzen wir das ein (bedenke [mm] $x=u^2$) [/mm]

[mm] $...=\frac{1}{2}\cdot{}\int{\frac{u}{u^2-1} \ 2u \ du}=\int{\frac{u^2}{u^2-1} \ du}=\int{\frac{u^2\red{-1+1}}{u^2-1} \ du}=\int{\left(1+\frac{1}{u^2-1}\right) \ du}=\int{1 \ du}+\int{\frac{1}{u^2-1} \ du}$ [/mm]

Für das letzte Integral mache eine Partialbruchzerlegung: [mm] $\frac{1}{u^2-1}=\frac{1}{(u+1)(u-1)}=\frac{A}{u+1}+\frac{B}{u-1}$ [/mm] ...

Dann hast du ne Summe ganz  einfacher Integrale ...


>
> als Beispiel:
>
> [mm]-\integral_{}^{}{\bruch{-2u}{1-u^{2}} u du}[/mm]

siehe oben ... ;-)

>  
> hat jemand eine Idee wie die Aufgabe zu lösen ist?
>  
> lg und frohen restlichen 2.weihnachtstag
>  

Dir auch

LG

schachuzipus


Bezug
        
Bezug
Integralberechnung: Alternative
Status: (Antwort) fertig Status 
Datum: 09:57 Sa 27.12.2008
Autor: Loddar

Hallo matze!


Alternativ kannst du hier auch wie folgt vorgehen, indem du zunächst die Definition des []Areatangens Hyperbolicus sowie ein MBLogarithmusgesetz anwendest:
[mm] $$ar\tanh(z) [/mm] \ = \ [mm] \bruch{1}{2}*\ln\left(\bruch{1+z}{1-z}\right) [/mm] \ = \ [mm] \bruch{1}{2}*\ln\left(1+z\right)-\bruch{1}{2}*\ln\left(1-z\right)$$ [/mm]
In Deinem Falle dann [mm] $\wurzel{x}$ [/mm] substituieren und anschließend partiell integrieren.


Gruß
Loddar


Bezug
                
Bezug
Integralberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:51 Fr 09.01.2009
Autor: matzew611

vielen dank für eure antworten :) bin bisschen spät, aber ein danke sollte noch drin sein, hatte es letztens vergessen zu schreiben :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]