matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisIntegrale gebr.rat. Fkt.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Integrale gebr.rat. Fkt.
Integrale gebr.rat. Fkt. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrale gebr.rat. Fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:48 Sa 21.01.2006
Autor: smee

Aufgabe
Bestimme die Stammfunktionen:

(1) [mm]f(x) = \frac{1}{x^4 - 81}[/mm]
(2) [mm]f(x) = \frac{1}{x^2 + x + 2}[/mm]

Hallo allerseits!

Ok, mir ist klar, dass gebrochen-rationalen Funktionen i.d.R. mittels Partialbruchzerlegung (PBZ) in eine Form gebracht werden, so dass das Integral leicht(er) bestimmt werden kann.

Ich habe allerdings das Problem, dass ich nicht genau verstehe, wie ich die PBZ mache, wenn eine Fkt. keine reell-wertige Nullstelle hat (wie die (2)).

Bei der (1) habe ich erstmal einfach so getan, als könnte ich die PBZ machen, wie gehabt; dann kommt das hier bei mir raus:

[mm]f(x) = \frac{1}{108}*(\frac{1}{x+3} - \frac{1}{x-3} - \frac{6}{x^2+9})[/mm]

Also:

[mm]\int~f(x)~dx = \frac{1}{108}*(log(|x+3|) - log(|x-3|)) - \frac{1}{108}*\int~\frac{6}{x^2+9}~dx[/mm]

Hier kann ich dann mit dem Integral, das rechts übrig bleibt, nichts anfangen ...

Desgleichen bei (2): Das Nennerpolynom hat keine reelle Nullstelle(n) ... Wie mache ich da dann die PBZ? Ich habe gelesen, dass man in solchen Fällen "komplexwertige Koeffizienten bei reellen Variablen" verwendet, wobei dann z.B. für [mm]x^2+1[/mm] die komplexen Nullstellen [mm]i[/mm] und [mm]-i[/mm] wären ...

Aber ich muss gestehen, dass ich trotzdem nicht so genau weiß, was ich nun machen muss.

Im Übrigen hat mein Programm bei den Stammfunktion beider Aufgaben [mm]tan^{-1}[/mm] drin stehen, und ich habe keine Ahnung, wo das herkommen soll ;-)

Ich wäre für Tipps wie immer sehr dankbar!

Gruß,
Carsten

        
Bezug
Integrale gebr.rat. Fkt.: Hinweis
Status: (Antwort) fertig Status 
Datum: 17:39 Sa 21.01.2006
Autor: MathePower

Hallo smee,

> Bestimme die Stammfunktionen:
>  
> (1) [mm]f(x) = \frac{1}{x^4 - 81}[/mm]h
>  (2) [mm]f(x) = \frac{1}{x^2 + x + 2}[/mm]

>  
> Bei der (1) habe ich erstmal einfach so getan, als könnte
> ich die PBZ machen, wie gehabt; dann kommt das hier bei mir
> raus:
>  
> [mm]f(x) = \frac{1}{108}*(\frac{1}{x+3} - \frac{1}{x-3} - \frac{6}{x^2+9})[/mm]

[ok]

>  
> Also:
>  
> [mm]\int~f(x)~dx = \frac{1}{108}*(log(|x+3|) - log(|x-3|)) - \frac{1}{108}*\int~\frac{6}{x^2+9}~dx[/mm]
>  
> Hier kann ich dann mit dem Integral, das rechts übrig
> bleibt, nichts anfangen ...

Verwende für Integrale der Bauart

[mm]\int {\frac{1} {{\left( {a\;x\; + \;b} \right)^2 \; + \;c^2 }}\;dx} [/mm]

die Substitution

[mm] \begin{gathered} a\;x\; + \;b\; = \;c\;\tan \;z \hfill \\ a\;dx\; = \;c\;\left( {1\; + \;\tan ^2 \;z} \right)\;dz \hfill \\ \end{gathered} [/mm]

>  
> Desgleichen bei (2): Das Nennerpolynom hat keine reelle
> Nullstelle(n) ... Wie mache ich da dann die PBZ? Ich habe
> gelesen, dass man in solchen Fällen "komplexwertige
> Koeffizienten bei reellen Variablen" verwendet, wobei dann
> z.B. für [mm]x^2+1[/mm] die komplexen Nullstellen [mm]i[/mm] und [mm]-i[/mm] wären
> ...
>  
> Aber ich muss gestehen, dass ich trotzdem nicht so genau
> weiß, was ich nun machen muss.
>  
> Im Übrigen hat mein Programm bei den Stammfunktion beider
> Aufgaben [mm]tan^{-1}[/mm] drin stehen, und ich habe keine Ahnung,
> wo das herkommen soll ;-)

Durch Anwendung der obigen Substitution kommt man da drauf.

Gruß
MathePower

Bezug
                
Bezug
Integrale gebr.rat. Fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:49 Sa 21.01.2006
Autor: smee

Danke für die Antwort ...

Leider komme ich mit der Substitution irgendwie nicht richtig klar.

[mm]\int~\frac{1}{x^2 + 9}~dx[/mm]

wird durch Substitution wie oben zu:

[mm]\int~\frac{3*(1 + tan^2 (z))}{(3*tan(z))^2 + 9}~dz[/mm]

Und wenn ich mich nicht verrechnet habe, kommt dann da raus:

[mm]= \frac{z}{3}[/mm]

Ist das soweit schon mal richtig?

Ich habe jetzt allerdings ein Brett vorm Kopf wenn's darum geht zurück zu substituieren ...

Und noch eine ganz doofe Frage: Wie kommt man auf eine solche Substitution??

Bezug
                        
Bezug
Integrale gebr.rat. Fkt.: Erkärung
Status: (Antwort) fertig Status 
Datum: 20:15 Sa 21.01.2006
Autor: MathePower

Hallo smee,

> Danke für die Antwort ...
>  
> Leider komme ich mit der Substitution irgendwie nicht
> richtig klar.
>  
> [mm]\int~\frac{1}{x^2 + 9}~dx[/mm]
>  
> wird durch Substitution wie oben zu:
>  
> [mm]\int~\frac{3*(1 + tan^2 (z))}{(3*tan(z))^2 + 9}~dz[/mm]
>  
> Und wenn ich mich nicht verrechnet habe, kommt dann da
> raus:
>  
> [mm]= \frac{z}{3}[/mm]
>  
> Ist das soweit schon mal richtig?
>  

Ja. [ok]

> Ich habe jetzt allerdings ein Brett vorm Kopf wenn's darum
> geht zurück zu substituieren ...

Substituiert haben wir wie folgt:

[mm]x\; = \;3\tan \;z[/mm]

Um die Substitution rückgängig zu machen, benötigen wir z(x). Diese bekommen wir, wenn wie die Umkehrfunktion des Tangens auf beiden Seiten anwenden:

[mm] \begin{gathered} x\; = \;3\tan \;z \hfill \\ \Leftrightarrow \;\frac{x} {3}\; = \;\tan \;z\;\left| {\arctan } \right. \hfill \\ \Rightarrow \;z\; = \;\arctan \;\frac{x} {3} \hfill \\ \end{gathered} [/mm]

Und das setzt Du jetzt in die erhaltene Stammfunktion ein.

>  
> Und noch eine ganz doofe Frage: Wie kommt man auf eine
> solche Substitution??  

Ich denke das ist Übungssache.

Das Ziel ist den Integranden so einfach wie möglich zu machen.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]