matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegralrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - Integralrechnung
Integralrechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:45 Do 01.11.2007
Autor: missjanine

Aufgabe
[mm] f(x)=-\bruch{1}{4}x^2+k [/mm]
[mm] A=\bruch{64}{3} [/mm]

Wie bestimme ich k, sodass der Graph der Funktion f mit der x-Achse eine Fläche vom Flächeninhalt einschließt?

        
Bezug
Integralrechnung: erst Nullstellen
Status: (Antwort) fertig Status 
Datum: 14:49 Do 01.11.2007
Autor: Roadrunner

Hallo missjanine!


Du musst hier zunächst die Nullstellen [mm] $x_1$ [/mm] und [mm] $x_2$ [/mm] der Funktionsschar [mm] $f_k(x)$ [/mm] berechnen mit [mm] $f_k(x) [/mm] \ = \ [mm] -\bruch{1}{4}*x^2+k [/mm] \ = \ 0$ .

Anschließend ist folgendes Integral nach $k \ = \ ...$ umzustellen:
[mm] $$\integral_{x_1}^{x_2}{f_k(x) \ dx} [/mm] \ = \ [mm] \integral_{x_1}^{x_2}{-\bruch{1}{4}*x^2+k \ dx} [/mm] \ = \ [mm] \bruch{64}{3}$$ [/mm]

Gruß vom
Roadrunner


Bezug
                
Bezug
Integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:12 Do 01.11.2007
Autor: MontBlanc

Hi,

kann man es nicht auch so machen?

Nullstellen:

[mm] \bruch{1}{4}*x^2+k=0 [/mm]

[mm] x_{N1}=-2*\wurzel{-k} \wedge x_{N2}=2*\wurzel{-k}, k\in\IR, [/mm] k [mm] \le [/mm] $0$


[mm] \integral_{x_{N1}}^{x_{N2}}{-\left(\bruch{1}{4}*x^2+k\right) dx} [/mm] =

[mm] \integral_{-2*\wurzel{-k}}^{2*\wurzel{-k}}{-\left(\bruch{1}{4}*x^2+k\right)dx} [/mm]


= [mm] \bruch{8*(-k)^{\bruch{3}{2}}}{3} [/mm]

Das ganze setzte man gleich [mm] \bruch{64}{3} [/mm] und erhält k=-4?


Mich verwirrt dabei nur, dass Du das Integral sofort gleich [mm] \bruch{64}{3} [/mm] gesetzt hast, ändert das irgendetwas am Rechenweg, oder würde man trotzdem so vorgehen, wie ich es getan habe?

Lg

Bezug
                        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:44 Do 01.11.2007
Autor: Teufel

Hi!

Es ändert nichts. Kannst den gegebenen Flächeninhalt sofort oder erst später hinschreiben. Allerdings hätte um das Integral entweder noch Betragsstriche gemusst, oder man hätte es gleich [mm] -\bruch{64}{3} [/mm] setzen müssen, da die Fläche ja unterhalb der x-Achse ist.

Bezug
                                
Bezug
Integralrechnung: Fläche oberhalb der x-Achse
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:47 Do 01.11.2007
Autor: Roadrunner

Hallo Teufel!


> da die Fläche ja unterhalb der x-Achse ist.

[notok] Das stimmt nicht. Die Fläche liegt eindeutig oberhalb der x-Achse, da es sich um eine nach unten geöffnete Parabel handelt.


Gruß vom
Roadrunner


Bezug
                                        
Bezug
Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:50 Do 01.11.2007
Autor: Teufel

Ah, klar ;) hätte mir vielleicht dir Uraufgabe angucken sollen... habe mit eXes Version gerechnet.

Dann solltest du aber auf k=4 kommen, eXe, da vor deinem Bruch noch ein - fehlt!

Danke für den Hinweis.

Bezug
                        
Bezug
Integralrechnung: Nullstellen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:49 Do 01.11.2007
Autor: Roadrunner

Hallo eXeQteR!


Du hast Dich bei den Nullstellen etwas mit dem Vorzeichen vertan (da Du wohl ein Minuszeichen unterschlagen hast). Die Nullstellen lauten:
[mm] $$x_{N1/2} [/mm] \ = \ [mm] \pm2*\wurzel{\red{+}k}$$ [/mm]

Gruß vom
Roadrunner


Bezug
                                
Bezug
Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:30 Do 01.11.2007
Autor: MontBlanc

huch, 'tschuldigung... Hab ich übersehen.

Danke für den Hinweis.

Lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]