matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisIntegration durch Substitution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - Integration durch Substitution
Integration durch Substitution < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration durch Substitution: Quadr als Summand unter Wurzel
Status: (Frage) beantwortet Status 
Datum: 19:55 Di 01.11.2005
Autor: sH4m3

hey leute - ich komm nich weiter und peil nur im kreis herum...

hab das integral:

s= [mm] \integral_{ r_{0}}^{ r_{n}} [/mm] {(1+ [mm] \bruch{ r^{2}}{ a^{2}})^{ \bruch{1}{2}}dr} [/mm]

und hab dann substituiert mit:

g(r)= [mm] \bruch{ r^{2}}{ a^{2}} [/mm]
g'(r)= [mm] \bruch{2r}{ a^{2}} [/mm]
f(z)= [mm] \bruch{a (1+z)^{ \bruch{1}{2}}}{2 \wurzel{z}} [/mm]

und damit ja dann:

s= [mm] \integral_{g( r_{0})}^{g( r_{n})} {\bruch{a (1+z)^{ \bruch{1}{2}}}{2 z^{ \bruch{1}{2}}} dz} [/mm]

nun will ich das durch produktintegration lösen, aber da verzettel ich mich immer in wurzeln über und unterm bruchstrich und komm auf keine stammfunktion - wie kann ich weitermachen???

danke im vorraus!

        
Bezug
Integration durch Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 22:18 Di 01.11.2005
Autor: Zwerglein

Hi, sH4m3,

> hab das integral:
>  
> s= [mm] \integral_{ r_{0}}^{ r_{n}}{(1+ \bruch{r^{2}}{a^{2}})^{\bruch{1}{2}} dr} [/mm]
>  
> und hab dann substituiert mit:
>  
> g(r)= [mm]\bruch{ r^{2}}{ a^{2}}[/mm]
>  g'(r)= [mm]\bruch{2r}{ a^{2}}[/mm]
>  

Also: Ganz ehrlich! Ich weiß nicht, ob diese Substitution zum Ziel führt!

Ich kenne nur folgenden Weg (wobei ich mich auf das unbestimmte Integral beschränke!):

[mm] \integral{\wurzel{1+\bruch{r^{2}}{a^{2}}} dr} [/mm]

= [mm] \bruch{1}{a}*\integral{\wurzel{a^{2}+r^{2}} dr} [/mm]  (natürlich mit a > 0 !!)

So: Und nun substituiert man normalerweise:
r = a*sinh(z)  bzw. [mm] r^{2} [/mm] = [mm] a^{2}*sinh^{2}(z) [/mm]
Daraus ergibt sich: [mm] \wurzel{a^{2}+r^{2}} [/mm] = [mm] a*cosh^{2}(z) [/mm]
und:
dr = a*cosh(z)dz

Somit wird aus unserem Integral:
[mm] \bruch{1}{a}*\integral{\wurzel{a^{2}+r^{2}} dr} [/mm]

= [mm] \bruch{1}{a}*a^{2}*\integral{cosh^{2}(z)dz} [/mm]

= [mm] a*\integral{cosh^{2}(z)dz} [/mm]

Kommst Du nun weiter?

mfG!
Zwerglein


Bezug
                
Bezug
Integration durch Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:40 Mi 02.11.2005
Autor: sH4m3

würde ich wahrscheinlich, aber ich komm mit dem schritt zum sinus nich klar...

> So: Und nun substituiert man normalerweise:
> r = a*sinh(z)  bzw.  =
> Daraus ergibt sich:  =  
> und:
> dr = a*cosh(z)dz

??? warum? ist das ne spezielle form der integration?

Bezug
                        
Bezug
Integration durch Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 09:12 Mi 02.11.2005
Autor: Stefan

Hallo!

> ??? warum? ist das ne spezielle form der integration?

Ja, und zwar eine []trigonometrische Substitution. Lies dir das mal durch, es lohnt sich!!

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]