matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntegration durch Substitution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - Integration durch Substitution
Integration durch Substitution < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration durch Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:12 Do 15.01.2015
Autor: UniversellesObjekt

Ich habe noch einmal eine Frage zur Integration durch Substitution. Ich möchte gerne [mm] $\int\dfrac{x}{(1-x^2)^{3/2}}dx$ [/mm] berechnen. (Soweit ich weiß, ist das die zweite Ableitung von [mm] $\arcsin$, [/mm] es sollte also [mm] $\frac{1}{\sqrt{1-x^2}}$ [/mm] herauskommen.) Mit der Substitution [mm] $u=\sqrt{1-x^2}$ [/mm] bin ich nicht weiter gekommen; gibt es eine bessere Möglichkeit?

Vielen Dank und Liebe Grüße,
UniversellesObjekt

        
Bezug
Integration durch Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 14:24 Do 15.01.2015
Autor: fred97

Hallo UVO


> Ich habe noch einmal eine Frage zur Integration durch
> Substitution. Ich möchte gerne
> [mm]\int\dfrac{x}{(1-x^2)^{3/2}}dx[/mm] berechnen. (Soweit ich
> weiß, ist das die zweite Ableitung von [mm]\arcsin[/mm], es sollte
> also [mm]\frac{1}{\sqrt{1-x^2}}[/mm] herauskommen.)

Das ist auch der Fall (bis auf eine additive Konstante).




>  Mit der
> Substitution [mm]u=\sqrt{1-x^2}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

bin ich nicht weiter gekommen;

> gibt es eine bessere Möglichkeit?

Diese Subst. ist doch goldrichtig:

Es folgt

  \bruch{du}{dx}=\bruch{-x}{\wurzel{1-x^2}}= \bruch{-x}{u},

somit

  $xdx=-udu$.

Folglich:  

   $ \int\dfrac{x}{(1-x^2)^{3/2}}dx =\int\dfrac{-u}{u^3}}du=\int\dfrac{-1}{u^2}}du= \bruch{1}{u}= \frac{1}{\sqrt{1-x^2}} $

Gruß FRED


>  
> Vielen Dank und Liebe Grüße,
>  UniversellesObjekt


Bezug
                
Bezug
Integration durch Substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:13 Do 15.01.2015
Autor: UniversellesObjekt

Hallo Fred!

Ich danke Dir, ich habe beim Ableiten von $u$ ein $x$ verloren, weil [mm] $(x^2)'=2$ [/mm] war bei mir, und ich habe den Fehler nicht gefunden. Ich hoffe, dass ich solche Fehler noch loswerden kann, oder sie zumindest entdecke.

Liebe Grüße,
UniversellesObjekt

Bezug
                        
Bezug
Integration durch Substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:16 Do 15.01.2015
Autor: YuSul

Vielleicht ist es auch einfach die Substitution

[mm] $z=1-x^2$ [/mm] zu benutzen. Die finde ich eigentlich "intuitiver" und auch einfacher damit zu rechnen.



Bezug
                                
Bezug
Integration durch Substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:23 Do 15.01.2015
Autor: fred97


> Vielleicht ist es auch einfach die Substitution
>
> [mm]z=1-x^2[/mm] zu benutzen. Die finde ich eigentlich "intuitiver"
> und auch einfacher damit zu rechnen.

Da hast Du recht, damit gehts etwas einfacher.

UVO kam aber mit der Substitution  $ [mm] u=\sqrt{1-x^2} [/mm] $  nicht zurecht, daher hab ich ihm (ihr ?) gezeigt, wie man mit dieser Subst. zum Ziel kommt.

FRED

>  
>  


Bezug
                                        
Bezug
Integration durch Substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:28 Do 15.01.2015
Autor: YuSul

Oh, Entschuldigung, da habe ich nicht aufmerksam gelesen, dass diese Substitution bereits probiert wurde.

Bezug
                                
Bezug
Integration durch Substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:24 Do 15.01.2015
Autor: UniversellesObjekt

Danke, für die Alternative! Ich habe den Weg auch mal gerade nachgerechnet. Bei meiner Substitution musste ich halt die Wurzel Ableiten, hier steht am Ende eine im Integral, vermutlich tut es sich nicht besonders viel.

Liebe Grüße,
UniversellesObjekt

Bezug
                                        
Bezug
Integration durch Substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:30 Do 15.01.2015
Autor: YuSul

Integriert wird letztendlich [mm] $\int z^{-3/2}\, [/mm] dz$. Das kann man natürlich auch mit einer Wurzel schreiben, aber ansonsten sind es ja lediglich die "bekannten" Gesetze.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]