matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationIntegration durch Substitution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Integration durch Substitution
Integration durch Substitution < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration durch Substitution: Brauche hilfe wegen Substi.
Status: (Frage) beantwortet Status 
Datum: 18:22 Mo 08.01.2007
Autor: thefabulousme86

Aufgabe
I = [mm] \integral_{1}^{0}x/(1+x)^{3/2}dx [/mm]

Integration durchführen mit Substitution u = (1+x)^(1/2)

Ich komm irgendwie nicht weiter:

I = [mm] \integral_{1}^{0}x/(1+x)^{3/2}dx [/mm]

Substitution u = (1+x)^(1/2)


du/dx=0,5(1+x)^(-0,5) *1     =>  dx=du/(0,5(1+x)^-0,5

[mm] \integral_{1}^{0}(x/u^3)*du/(0,5*(1+x)^{-0,5}) [/mm]

Ich lass des integrallzeichen mal weg, also steht immer ein Integral davor:

I= 0,5* [mm] (1/(\wurzel{1+x})*(x/u^3)du [/mm]
I= [mm] 0,5\integral_{1}^{0}{x/(\wurzel{1+x}*u^3)du} [/mm]


jetzt komm ich nicht weiter!!! hab ich schon was falsch gemacht??? ich brauch echt dringend eure hilfe.

Vielen Dank

Daniel

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integration durch Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 18:34 Mo 08.01.2007
Autor: Zwerglein

Hi, Daniel,

> I = [mm]\integral_{1}^{0}x/(1+x)^{3/2}dx[/mm]
>  
> Integration durchführen mit Substitution u = (1+x)^(1/2)

Frage:
Ist diese Substitution vom Aufgabensteller vorgeschrieben
oder ist das Dein eigener Vorschlag?

Weil:
Ich würd' viel einfacher u = 1+x substituieren!

mfG!
Zwerglein


Bezug
                
Bezug
Integration durch Substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:35 Mo 08.01.2007
Autor: thefabulousme86

ist so vom aufgabensteller vorgeschrieben. versteh auch nicht warum er es so kompliziert will..

ist mein weg bis jetzt falsch???

Bezug
                        
Bezug
Integration durch Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:43 Mo 08.01.2007
Autor: thefabulousme86

Leider muss ich es mit der Substitution machen. kann mir bitte einer helfen was ich falsch gemacht habe, da ich nicht weiter komme.


Vielen dank

Bezug
                                
Bezug
Integration durch Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 19:24 Mo 08.01.2007
Autor: Zwerglein

Hi, Daniel,

alles klar!
Siehe meine Antwort Nummero 2!

mfG!
Zwerglein
(fabulous too)

Bezug
        
Bezug
Integration durch Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 19:18 Mo 08.01.2007
Autor: Zwerglein

Hi, Daniel,

> I = [mm]\integral_{1}^{0}x/(1+x)^{3/2}dx[/mm]
>  
> Integration durchführen mit Substitution u = (1+x)^(1/2)
>  Ich komm irgendwie nicht weiter:
>
> I = [mm]\integral_{1}^{0}x/(1+x)^{3/2}dx[/mm]
>  
> Substitution u = (1+x)^(1/2)

OK! Dann halt mit der Substitution!
  

> du/dx=0,5(1+x)^(-0,5) *1     =>  dx=du/(0,5(1+x)^-0,5

Schon, aber da Du ja am Ende alles durch u ersetzen sollst, formst Du das besser jetzt schon mal um in:

dx = 2u*du
(sieht auch viel "angenehmer" aus - stimmt's?!)

> [mm]\integral_{1}^{0}(x/u^3)*du/(0,5*(1+x)^{-0,5})[/mm]

Die Grenzen sind nun auf jeden Fall falsch, denn:
Aus x=0 wird u=1
und aus x=1 wird [mm] u=\wurzel{2} [/mm] !!

> Ich lass des integrallzeichen mal weg, also steht immer ein
> Integral davor:

Ist OK!
  

> I= 0,5* [mm](1/(\wurzel{1+x})*(x/u^3)du[/mm]

Das ist falsch! (U.a weil die 0,5 IM NENNER steht und auch die Hochzahl -0,5 nicht berücksichtigt wird!)
Mit meinem Vorschlag (siehe oben) hast Du hier schon:

I= [mm] \bruch{x}{u^{3}}*2u*du [/mm]

Und nun muss nur noch das x weg.
Aus u = (1+x)^(1/2) wird: [mm] u^{2} [/mm] = 1+x und somit: x = [mm] u^{2} [/mm] - 1

Also: I= [mm] \bruch{u^{2}-1}{u^{3}}*2u*du [/mm]

Und jetzt: vereinfachen und umformen bis zu:

I = 2*(1 - [mm] u^{-2})du [/mm]

(Alles nochmal nachrechnen! Tipp- und Leichtsinnsfehler nicht ausgeschlossen!)

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]