matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenIntegration e-Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Exp- und Log-Funktionen" - Integration e-Funktion
Integration e-Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:47 Di 30.09.2014
Autor: micha20000

Aufgabe
Integrieren Sie folgende Funktion.
f(x)= [mm] -e^{-x} [/mm]

Hallo,

ich versuche gerade diese Funktion zu integrieren, allerdings ohne Substitution. Gibt es überhaupt eine Möglichkeit, solche Aufgaben ohne die Substitutionsregel zu rechnen? Diese haben wir nämlich noch nicht im Unterricht gehabt, allerdings ist mir auch entfallen, wie solche Aufgaben grundsätzlich dann integriert werden...

Vielen Dank

        
Bezug
Integration e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:57 Di 30.09.2014
Autor: chrisno

Einfach ausprobieren ist eine erlaubte Möglichkeit. Bei einer Exponentialfunktion leite ich die gegebene Funktion einfach ab und schaue was herauskommt. Das gibt eine Idee, wie ich die Funktion ändern muss, damit die gewünschte Funktion beim Ableiten entsteht.
Beim Integrieren gilt: Ich behaupte F(x) ist eine Stammfunktion zu f(x). Beweis: ich leite F(x) ab.
Ich bin normalerweise keine Rechenschaft schuldig, wie ich auf F(x) gekommen bin. Es ist natürlich nett, wenn ich es dennoch verrate.
Probier es aus: leite f(x)= [mm]-e^{-x}[/mm] ab.


Bezug
                
Bezug
Integration e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:04 Di 30.09.2014
Autor: micha20000

Also die Funktion abgeleitet ergibt folgendes:

f'(x)= [mm] -x*e^{-x-1} [/mm]

Aber wie komme ich jetzt auf die Integration und ist das überhaupt richtig? Gibt es hier auch nicht eine schnellere Methode? In der Klausur kann man ja nicht endlos lang ausprobieren...

Bezug
                        
Bezug
Integration e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:18 Di 30.09.2014
Autor: DieAcht

Hallo,


> Also die Funktion abgeleitet ergibt folgendes:
>  
> f'(x)= [mm]-x*e^{-x-1}[/mm]

[notok]

Sei [mm] $g\$ [/mm] differenzierbar, dann gilt:

      [mm] \left(e^{g(x)}\right)'=e^{g(x)}*g'(x). [/mm]

Zum Beispiel:

      [mm] \left(e^{2x}\right)'=e^{2x}*(2x)'=2e^{2x}. [/mm]

Jetzt nochmal.

> Aber wie komme ich jetzt auf die Integration und ist das
> überhaupt richtig? Gibt es hier auch nicht eine schnellere
> Methode? In der Klausur kann man ja nicht endlos lang
> ausprobieren...

Ausprobieren ist hier am Besten. Wenn du das bei ein paar Auf-
gaben gemacht hast, dann wirst du auch ein besseres Auge dafür
entwickeln. Mathematik nicht immer nach einem Schema!

Hier könnte man vielleicht

      [mm] $\int -e^{-x}dx=-\int e^{-x} [/mm] dx$

betrachten, aber auch das wird dir nicht dabei helfen Erfahrung
zu sammeln, die du auf jeden Fall brauchen wirst.

Gruß
DieAcht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]