matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungIntgr. Sin(x)Cos(x)e^(aCos(x))
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - Intgr. Sin(x)Cos(x)e^(aCos(x))
Intgr. Sin(x)Cos(x)e^(aCos(x)) < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Intgr. Sin(x)Cos(x)e^(aCos(x)): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:58 Mo 29.09.2008
Autor: Rutzel

Hallo zusammen,

ich sitze schon eine weile an folgendem Integral und habe schon sämtliche partielle Integrationsmöglichkeiten ausporbiert (einmal sin(x)cos(x) als f(x) und exp(aCos(x)) als g'(x) betrachtet, einmal anderesherum und alle anderen Kombinationsmöglichkeiten):

[mm] \integral{Sin(x)Cos(x)exp(a\cdot Cos(x)) dx} [/mm]

(teilweise muss ich nach mehrmaligen partiellen Integrieren auch die Stammfunktion von [mm] exp(a\cdot [/mm] Cos(x)) berechnen, was überhaupt nicht gelingt.....)

Also, falls jemand eine Idee hat, wie man dies per Hand integriert, nur her damit :-)

Gruß,
Rutzel

        
Bezug
Intgr. Sin(x)Cos(x)e^(aCos(x)): Antwort
Status: (Antwort) fertig Status 
Datum: 23:02 Mo 29.09.2008
Autor: schachuzipus

Hallo Rutzel,

substituiere zunächst [mm] $u:=a\cdot{}\cos(x)$ [/mm]

Dann kommst du auf ein Integral in u, das du mit partieller Integration leicht erschlagen kannst ...


LG

schachuzipus

Bezug
                
Bezug
Intgr. Sin(x)Cos(x)e^(aCos(x)): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:11 Mo 29.09.2008
Autor: Rutzel

Hallo,

dann habe ich sowas wie

[mm] \integral{Sin(x)Cos(x)exp(a\cdot Cos(x)) dx} [/mm]

= [mm] sin(x)\cdot sin(x)\cdot e^u-\integral{-cos(x)\cdot sin(x)\cdot e^u} [/mm]

womit ich wieder beim anfang wäre.

Gruß,
Rutzel

Bezug
                        
Bezug
Intgr. Sin(x)Cos(x)e^(aCos(x)): Antwort
Status: (Antwort) fertig Status 
Datum: 23:20 Mo 29.09.2008
Autor: schachuzipus

Hallo nochmal,

> Hallo,
>  
> dann habe ich sowas wie
>  
> [mm]\integral{Sin(x)Cos(x)exp(a\cdot Cos(x)) dx}[/mm]
>  
> = [mm]sin(x)\cdot sin(x)\cdot e^u-\integral{-cos(x)\cdot sin(x)\cdot e^u}[/mm] [kopfkratz3]

Das sieht wie eine Mischung aus Substituition un partieller Integration aus.

Du solltest mittels der Substitution [mm] $\green{u:=a\cdot{}\cos(x)}$ [/mm] alle Ausdrücke, die im Ausgangsintegral in x stehen durch welche in u ersetzen:

[mm] $u=a\cdot{}\cos(x)\Rightarrow u'=\frac{du}{dx}=-a\cdot{}\sin(x)\Rightarrow \red{dx=-\frac{du}{a\cdot{}\sin(x)}}$ [/mm]

Ebenso folgt aus [mm] $u=a\cdot{}\cos(x)$, [/mm] dass [mm] $\blue{\cos(x)=\frac{u}{a}}$ [/mm] ist

Also [mm] $\int{\sin(x)\cdot{}\blue{\cos(x)}\cdot{}\exp(\green{a\cdot{}\cos(x)}) \ \red{dx}}=\int{\sin(x)\cdot{}\blue{\frac{u}{a}}\cdot{}\exp(\green{u}) \ \left(\red{-\frac{du}{a\cdot{}\sin(x)}}\right)}$ [/mm]

[mm] $=-\frac{1}{a^2}\cdot{}\int{u\cdot{}\exp(u) \ du}$ [/mm]

Das kannst du nun einfach partiell integrieren und am Ende resubstituieren


>  
> womit ich wieder beim anfang wäre.
>  
> Gruß,
>  Rutzel

LG

schachuzipus


Bezug
                                
Bezug
Intgr. Sin(x)Cos(x)e^(aCos(x)): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:30 Mo 29.09.2008
Autor: Rutzel

Hallo schachuzipus,

vielen vielen Dank für Deine tolle Erklärung :-)

Gruß,
Rutzel

Bezug
        
Bezug
Intgr. Sin(x)Cos(x)e^(aCos(x)): Antwort
Status: (Antwort) fertig Status 
Datum: 23:10 Mo 29.09.2008
Autor: Teufel

Hi!

Ansonsten müsste es auch klappen, wenn du u:=cosx und [mm] v':=sinx*e^{a*cosx} [/mm] setzt und dann partiell integrierst.

[anon] Teufel

Bezug
        
Bezug
Intgr. Sin(x)Cos(x)e^(aCos(x)): Antwort
Status: (Antwort) fertig Status 
Datum: 23:31 Mo 29.09.2008
Autor: weduwe

partielle integration führt eh zum ziel
[mm] I=\integral_{}^{}sinx\cdot cosxe^{a\cdot cosx dx} [/mm]
[mm] I=-\frac{cosx}{a}e^{a\cdot cosx}-\frac{1}{a}\integral_{}^{}{sinx\cdot e^{a\cdot cosx} dx}=-\frac{cosx}{a}e^{a\cdot cosx}+\frac{1}{a^2}e^{a\cdot cosx}=e^{a\cdot cosx}\cdot\frac{1-a\cdot cosx}{a^2} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]