matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraInvariante Unterräume
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Invariante Unterräume
Invariante Unterräume < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Invariante Unterräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:08 Mo 23.04.2007
Autor: Sina.S

Aufgabe
Es seien K ein Körper, 0 ungleich [mm] \lambda \in [/mm] K und A := [mm] \pmat{ 1 & \lambda \\ -\lambda & 1 }. [/mm] Der Endomorphismus Phi [mm] \in [/mm] End(K²) wird beschrieben durch [mm] D_{S}(Phi) [/mm] = A. Finden Sie für K = [mm] \IQ, [/mm] K = [mm] \IC, [/mm] K = [mm] \IF_{2}, [/mm] sowie K = [mm] \IF_{3} [/mm] alle Phi-invarianten Unterräume von K².

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Liebe Matheraum-Community,

leider muss ich eure Hilfe in Anspruch nehmen, da mir diese Aufgabe den letzten Nerv raubt. Bis dato war ich stille Leserin und habe meine Probleme ohne die Zeitaufwendung Anderer gelöst...
Ich weiß mittlerweile, dass in Phi-invarianter Unterraum die Form [mm] \pmat{ A & * \\ 0 & B } [/mm] besitzt, kann aber mit dem Rest der Aufgabenstellung nichts anfangen.
Vielleicht kann mir jemand auf die Sprünge helfen.

Gruß
Sina

        
Bezug
Invariante Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 13:40 Di 24.04.2007
Autor: angela.h.b.


> Es seien K ein Körper, 0 ungleich [mm]\lambda \in[/mm] K und A :=
> [mm]\pmat{ 1 & \lambda \\ -\lambda & 1 }.[/mm] Der Endomorphismus
> Phi [mm]\in[/mm] End(K²) wird beschrieben durch [mm]D_{S}(Phi)[/mm] = A.
> Finden Sie für K = [mm]\IQ,[/mm] K = [mm]\IC,[/mm] K = [mm]\IF_{2},[/mm] sowie K =
> [mm]\IF_{3}[/mm] alle Phi-invarianten Unterräume von K².
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  

>

Hallo,

[willkommenmr].

U invarianter Unterraum bedeutet ja:

[mm] \Phi [/mm] (U) [mm] \subseteq [/mm] U.

Als Vektorraum haben wir hier [mm] K^2, [/mm] dessen Dimension =2.

Selbstverständlich sind [mm] K^2 [/mm] und [mm] {\vektor{0\\ 0}} [/mm] invariante Unterräume.

Bleiben die Unterräume der Dimension 1 zu untersuchen.

Sei U Unterraum der Dimension 1. Dann gibt es x,y [mm] \in [/mm] K mit [mm] U=<\vektor{x \\ y}>. [/mm]

Wenn nun U [mm] \phi-invariant [/mm] ist, so gibt es ein a [mm] \in [/mm] K mit

[mm] A\vektor{x \\ y}=a\vektor{x \\ y}. [/mm]

Dieses mußt Du ausschlachten und Beachtung der Eigenschaften von K.

Gruß v. Angela

Bezug
        
Bezug
Invariante Unterräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:53 Di 24.04.2007
Autor: Sina.S

Danke für Deine Hilfe. Du hast mir sehr geholfen und nun sieht die Welt ein wenig klarer aus. :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]