matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraInverse Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Inverse Matrix
Inverse Matrix < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inverse Matrix: Frage
Status: (Frage) beantwortet Status 
Datum: 13:48 So 07.08.2005
Autor: juriman

In meinem Buch steht

[mm] A^{-1} [/mm] =  [mm] \bruch{1}{det(A)} [/mm] * [mm] A^T [/mm]

Für A =  [mm] \pmat{ 3 & -1 \\ -2 & 1 } [/mm] komt es aber überhapt nicht hin.
Oder gilt diese Formel für orthogenale Matrixen [mm] (A^{-1} [/mm] = [mm] A^T) [/mm] bzw für det(A)=1?

        
Bezug
Inverse Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 13:54 So 07.08.2005
Autor: Hanno

Hallo!

Die Formel, die du angegeben hast, gilt, wenn du [mm] $A^T$ [/mm] durch die adjunkte Matrix von $A$ ersetzt! Das muss ein Druckfehler gewesen sein.


Liebe Grüße,
Hanno

Bezug
                
Bezug
Inverse Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:10 So 07.08.2005
Autor: juriman

Ach so.
Wie kommt man den zu der adjunkte Matrix in dem obigen Beispeil?
Ist es einfacher/schneller hier das Gauß-Jordan Austauschverfahren zu benutzen? Auch bei den 3-dim Matrizen?

Bezug
                        
Bezug
Inverse Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 16:08 So 07.08.2005
Autor: DaMenge

Hallo,

leider kenne ich eure Formel nicht und kann dazu deshalb auch nichts sagen.

Jedenfalls in Bezug auf die schnelligkeit : Es kommt immer ganz darauf an, wieoft man das denn schon gemacht hat : wenn man Gauß-Jordan zum ersten Mal macht, braucht man vielleicht 5min , aber nach dem 10. mal nur noch 30sek ...

Also : Übung macht den Meister:

Übrigens wie man das an einer 2x2 Matrix macht - wohlgemerkt BEIDE Wege, findest du im der MatheBank ; MBGauß-Jordan

viele Grüße
DaMenge

Bezug
                                
Bezug
Inverse Matrix: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:41 So 07.08.2005
Autor: juriman

ok, danke für die Antworten.
Denke werde mal der Gauß-Jordan anwenden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]