matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraInvertierbare Matrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Invertierbare Matrizen
Invertierbare Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Invertierbare Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:00 Di 02.01.2007
Autor: Informacao

Hallo,

ich glaube, ich habe momentan eine kleine Denklücke. Wie erkenne ich nochmal, ob eine Matrix A invertierbar ist? Es muss eine Matrix B geben mit A*B=B*A=1 oder?
Bsp. Folgende Matrix ist gegeben:

[mm] \pmat{ 1 & 2 \\ 3 & 4 } [/mm]

Wie finde ich nun heraus, OB sie invertierbar ist?

Viele Grüße
Informacao

        
Bezug
Invertierbare Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:23 Di 02.01.2007
Autor: angela.h.b.

>
> Wie finde ich nun heraus, OB sie invertierbar ist?

Hallo,

wenn's nur um das OB geht:

Berechne die Determinante der Matrix. Ist sie [mm] \not=0, [/mm] so ist die Matrix invertierbar.

Gruß v. Angela

Bezug
                
Bezug
Invertierbare Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:54 Di 02.01.2007
Autor: Informacao

Hi,

danke, gut und das geht nicht anders?

Und wie mache ich das dann wenn ich das Inverse der Matrix auch noch bestimmen soll..also nicht nur das "ob"..?
Viele Grüße
Informacao

Bezug
                        
Bezug
Invertierbare Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:02 Di 02.01.2007
Autor: angela.h.b.


> Hi,
>
> danke, gut und das geht nicht anders?
>
> Und wie mache ich das dann wenn ich das Inverse der Matrix
> auch noch bestimmen soll..also nicht nur das "ob"..?
>

Hallo,

Du könntest
[mm] \pmat{ 1 & 2 \\ 3 & 4 }\pmat{ a & b \\ c & d } [/mm] berechnen, und Dir durch Vergleich mit
[mm] \pmat{ 1 & 0 \\ 0 & 1 } [/mm] ein Gleichungssystem aus 4 Gleichungen mit 4 Variablen aufstellen, welches Du dann löst.

Gruß v. Angela

Bezug
                                
Bezug
Invertierbare Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:09 Di 02.01.2007
Autor: Informacao

Hm, kannst du mir das vielleicht einmal zeigen, damit ich das Prinzip verstehe?

Viele Grüße
Informacao

Bezug
                                        
Bezug
Invertierbare Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:20 Di 02.01.2007
Autor: angela.h.b.

Es soll sein

[mm] \pmat{ 1 & 0 \\ 0 & 1}=\pmat{ 1 & 2 \\ 3 & 4 }\pmat{ a & b \\ c & d }=\pmat{ a+2b & b+2d \\ 3a+4c & 3b+4d } [/mm]

Das Ergebnis der Multiplikation vergleicht man nun mit der Einheitsmatrix:

oben links:
1=a+2b

oben rechts:
0=b+2d

unten links:
0=3a+4c

unten rechts:
1=3b+4d

Dieses GS kannst Du nach a,b,c,d auflösen. Die errechneten Werte in [mm] \pmat{ a & b \\ c & d } [/mm] eingesetzt liefern Dir die inverse Matrix zu [mm] \pmat{ 1 & 2 \\ 3 & 4 }. [/mm]
Davon, ob Du richtig gerechnet hast, kannst Du Dich dann sicherheitshalber überzeugen, indem Du [mm] \pmat{ 1 & 2 \\ 3 & 4 } [/mm] mit Deiner errechneten Matrix multiplizierst.

Gruß v.Angela

Bezug
                                                
Bezug
Invertierbare Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:22 Di 02.01.2007
Autor: Informacao

Alles klar, ich habs verstanden.

Danke, Informacao

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]