matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperIrreduzible Polynome
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Irreduzible Polynome
Irreduzible Polynome < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Irreduzible Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:28 Do 11.09.2014
Autor: Natscha89

Aufgabe
Entscheiden Sie für die unten genannten Ringe R, ob das Polynom
f = [mm] 33t^4 [/mm] + [mm] 15t^2 [/mm] + 45 [mm] \in [/mm] R[t]
irreduzibel ist. Ist es nicht irreduzibel, bestimmen Sie eine Zerlegung von f in irreduzible
Faktoren.
a) R [mm] =\IF2. [/mm]
c) R [mm] =\IQ. [/mm]
b) R = [mm] \IZ. [/mm]

Hallo! Ich hab da mal ne Frage und zwar:
Zunächst kann ich hier Eisenstein anwenden, weil
Sei p=5
1. 5 teilt nicht 33
2.5 / 15 und 5 / 45
3. [mm] 5^2 [/mm] teilt nicht 45
also ist f in [mm] \IQ[x] [/mm] irreduzibel.
Da f nicht primitv, da [mm] ggt(33,15,45)\not=1 [/mm] ist es in [mm] \IZ [/mm] reduzibel?
Wenn ja muss ich dann f durch [mm] x^2 [/mm] +x+1 teilen um eine reduzible Zerlegung zu finden?
Danke schon mal
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
LG Natascha

        
Bezug
Irreduzible Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 11:43 Do 11.09.2014
Autor: hippias


> Entscheiden Sie für die unten genannten Ringe R, ob das
> Polynom
>  f = [mm]33t^4[/mm] + [mm]15t^2[/mm] + 45 [mm]\in[/mm] R[t]
>  irreduzibel ist. Ist es nicht irreduzibel, bestimmen Sie eine Zerlegung von f in irreduzible
>  Faktoren.
>  a) R [mm]=\IF2.[/mm]
> c) R [mm]=\IQ.[/mm]
> b) R = [mm]\IZ.[/mm]
>  Hallo! Ich hab da mal ne Frage und zwar:
>  Zunächst kann ich hier Eisenstein anwenden, weil
> Sei p=5
>  1. 5 teilt nicht 33
>  2.5 / 15 und 5 / 45
>  3. [mm]5^2[/mm] teilt nicht 45
> also ist f in [mm]\IQ[x][/mm] irreduzibel.

Ja.

>  Da f nicht primitv, da [mm]ggt(33,15,45)\not=1[/mm] ist es in [mm]\IZ[/mm] reduzibel?

Ja.

>  Wenn ja muss ich dann f durch [mm]x^2[/mm] +x+1 teilen um eine reduzible Zerlegung zu finden?

Das verstehe ich gar nicht. Wenn Du ein Polynom durch ein anderes teilst, erhaelst Du als Ergebnis ein Polynom, und eventuell einen Rest, aber keine irreduzible Zerlegung. Auch sehe ich nicht, wie [mm] $x^{2}+x+1$ [/mm] ins Spiel kommt.

>  Danke schon mal
>  Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
>  LG Natascha


Bezug
                
Bezug
Irreduzible Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:07 Do 11.09.2014
Autor: Natscha89

Ha hab den Fehler gefunden, dachte das wäre das einzige irreduzible quadratische Polynom aber das gilt ja nur in [mm] \IF2. [/mm]
Aber wie finde ich jetzt eine Zerlegung?

Bezug
                        
Bezug
Irreduzible Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 22:32 Do 11.09.2014
Autor: hippias

Ein Standardverfahren gibt es wohl nicht. Typischerweise versucht man ersteinmal Nullstellen zu finden. Bei Deinem Beispiel ist es aber viel simpler. Vermutlich so einfach, dass Du es schlicht uebersiehst: da steckt aus "ausgeartetes" Polynom als Faktor drin. Bzw. Du hast ja Primitivitaet erwaehnt: was heisst das eigentlich nochmal fuer ein Polynom?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]