matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikIrreduzible Polynome
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Diskrete Mathematik" - Irreduzible Polynome
Irreduzible Polynome < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Irreduzible Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:25 Fr 17.12.2010
Autor: DARKMAN_X

Aufgabe
Gegeben sei das Polynom [mm] f(T):=T^{3} [/mm] + [mm] T^{2} [/mm] + 1 [mm] \in \IZ_{2} [/mm] [T].
a) Zeigen Sie, dass das Polynom [mm] f(T):=T^{3} [/mm] + [mm] T^{2} [/mm] + 1 [mm] \in \IZ_{2} [/mm] [T] irreduzibel ist.
Ferner Sei m [mm] \subset \IZ_{2} [/mm] [T] das von f in [mm] \IZ_{2} [/mm] [T] erzeugte Ideal und [mm] \IF_{8}:= \IZ_{2} [/mm] [T]/m der Körper mit 8 Elementen.

b) Zeigen Sie, dass [mm] (T^{2} [/mm] + T + 1) + m [mm] \in \IF_{8} [/mm] ein erzeugendes Element der multiplikativen Gruppe [mm] (\IF\*_{8},*) [/mm] ist.

c) Welche Ordnung hat das Element (T + 1) + [mm] m\in \IF_{8} [/mm] in der multiplikativen Gruppe [mm] (\IF\*_{8},* [/mm] )?

Verstehe diese Komplete Aufgabe nicht.
Kann mir jemand helfen, diese Aufgabe zu verstehen.
Ich glaube zu wissen, das a) irreduzibel ist weil es keine Nullstellen besitzt. Habe das mal so gelesen und nichts verstanden.
Habe auch gelesen das man es anhand der Eisenstein Kriteriums lösen kann, aber auch nicht immer.
Verstehe es einfach nicht.  
Bin am verzweifeln.
Bitte helft mir es zu verstehen am besten anhand eines Beispieles.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

MfG

[mm] DARKMAN_X [/mm]

        
Bezug
Irreduzible Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 19:43 Fr 17.12.2010
Autor: Berieux

Hallo!

>  Verstehe diese Komplete Aufgabe nicht.
>  Kann mir jemand helfen, diese Aufgabe zu verstehen.
>  Ich glaube zu wissen, das a) irreduzibel ist weil es keine
> Nullstellen besitzt. Habe das mal so gelesen und nichts
> verstanden.

Ja in diesem Fall reicht das tatsächlich als Begründung, aber wieso? Was bedeutet es, dass ein Polynom irreduzibel ist?

> Habe auch gelesen das man es anhand der Eisenstein
> Kriteriums lösen kann, aber auch nicht immer.
>  Verstehe es einfach nicht.  
> Bin am verzweifeln.
>  Bitte helft mir es zu verstehen am besten anhand eines
> Beispieles.

Die anderen Aufgaben sind im Prinzip bloß nachrechnen (hab ich jetzt selbst allerdings noch nicht gemacht).
Eigentlich müsste man für die b) natürlich zeigen dass[mm] \IZ_2\left[ T \right]/m [/mm] tatsächich der Körper mit 8 Elementen ist. So wie die Aufgabe gestellt ist, müsst ihr das nicht tun. Das erleichtert die Sache. Jetzt musst du dir klar machen wie die Multiplikation in [mm] \IZ_2\left[ T \right]/m [/mm] definiert ist, und was es bedeutet dass ein Element die multiplikative Gruppe erzeugt.


>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> MfG
>  
> [mm]DARKMAN_X[/mm]  


Beste Grüße,
Berieux

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]