matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesIsometrie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra Sonstiges" - Isometrie
Isometrie < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Isometrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:17 Sa 25.04.2015
Autor: zahlenfreund

Aufgabe
Sei <-,-> das Standardskalarprodukt auf [mm] \IR^{n} [/mm] \ {0}. Betrachten sie die Abbildung  [mm] s_{a}: \IR^{n}\to \IR^{n} [/mm]
[mm] v\to s_{a}(v)=v-2*a*/ [/mm] und überlegen Sie sich zunächst, was passiert, wenn man für v den Vektor a
und einen zu a orthogonalen Vektor einsetzt. Zeigen Sie:
(i) [mm] s_{a} [/mm] ist eine Isometrie
(ii) Bestimmen Sie fur alle λ ∈ R die Dimension des Eigenraums V (λ) zu λ.
(iii) Bestimmen Sie die Determinante [mm] det(s_{a}). [/mm]
Was ist für n = 3 die geometrische Bedeutung der Abbildung [mm] s_{a}? [/mm]

Hallo zusammen,

[mm] s_{a}(a)=-a [/mm] und für v orthogonal zu a ist [mm] s_{a}(v)=v. [/mm]

i) hab ich schon gezeigt
ii) sei B eine orthogonale Basis mit den vektoren B={ [mm] s_{1},..., s_{n-1}, [/mm] a }.
    [mm] s_{1},..., s_{n-1} [/mm] sind orthogonal zu a.
Als nächstes bilde ich die Darstellungsmatrix bezüglich der Basis
[mm] s_{a}(a)=-a [/mm]
[mm] s_{a}(a)=-1*a+0*s_{1}+..+0*s_{n-1} [/mm]
[mm] s_{a}(s_{1})=s_{1} [/mm]
[mm] s_{a}(s_{1})=0*a+1*s_{1}+...+0*s_{n-1} [/mm]

Meine Darstellungsmatrix [mm] A=\begin{bmatrix} -1 & \cdots & 0 \\ \vdots & 1 \dots & \vdots \\ 0 & \cdots & 1 \end{bmatrix} [/mm]

Wenn λ ein Eigenwert ist der Eigenraum [mm] \begin{bmatrix} -1- λ & \cdots & 0 \\ \vdots & 1-λ \dots & \vdots \\ 0 & \cdots & 1-λ \end{bmatrix} [/mm]  ( Auf der Diagonale soll -λ stehen)
Muss ich die Dimension des Eigenraums in Abhängigkeit von λ bestimmen ?
Ist es bis hier hin richtig ?

iii) Die Determinante ist das Produkt der Skalare auf der Diagonalen der Matrix A also gleich -1.

mfg zahlenfreund


        
Bezug
Isometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 Sa 25.04.2015
Autor: hippias


> Sei <-,-> das Standardskalarprodukt auf [mm]\IR^{n}[/mm] \ {0}.
> Betrachten sie die Abbildung  [mm]s_{a}: \IR^{n}\to \IR^{n}[/mm]
>  
> [mm]v\to s_{a}(v)=v-2*a*/[/mm] und überlegen Sie sich
> zunächst, was passiert, wenn man für v den Vektor a
>  und einen zu a orthogonalen Vektor einsetzt. Zeigen Sie:
>  (i) [mm]s_{a}[/mm] ist eine Isometrie
>  (ii) Bestimmen Sie fur alle λ ∈ R die Dimension des
> Eigenraums V (λ) zu λ.
>  (iii) Bestimmen Sie die Determinante [mm]det(s_{a}).[/mm]
>  Was ist für n = 3 die geometrische Bedeutung der
> Abbildung [mm]s_{a}?[/mm]
>  Hallo zusammen,
>  
> [mm]s_{a}(a)=-a[/mm] und für v orthogonal zu a ist [mm]s_{a}(v)=v.[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  
> i) hab ich schon gezeigt
>  ii) sei B eine orthogonale Basis naler Basis

Mir ist nicht ganz klar, was Du hier mit orthogonaler Basis meinst. Aber vermutlich hat es keine Bedeutung fuer den Beweis.

> mit den vektoren B={
> [mm]s_{1},..., s_{n-1},[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

a }.

>      [mm]s_{1},..., s_{n-1}[/mm] sind orthogonal zu a.

Man koennte etwas ausfuehren, weshab es so eine spezielle Basis ueberhaupt gibt.

> Als nächstes bilde ich die Darstellungsmatrix bezüglich
> der Basis
>  [mm]s_{a}(a)=-a[/mm]
> [mm]s_{a}(a)=-1*a+0*s_{1}+..+0*s_{n-1}[/mm]
>  [mm]s_{a}(s_{1})=s_{1}[/mm]
> [mm]s_{a}(s_{1})=0*a+1*s_{1}+...+0*s_{n-1}[/mm]
>  
> Meine Darstellungsmatrix [mm]A=\begin{bmatrix} -1 & \cdots & 0 \\ \vdots & 1 \dots & \vdots \\ 0 & \cdots & 1 \end{bmatrix}[/mm]
>  
> Wenn λ ein Eigenwert ist der Eigenraum [mm]\begin{bmatrix} -1- λ & \cdots & 0 \\ \vdots & 1-λ \dots & \vdots \\ 0 & \cdots & 1-λ \end{bmatrix}[/mm]
>  ( Auf der Diagonale soll -λ stehen)
>  Muss ich die Dimension des Eigenraums in Abhängigkeit von
> λ bestimmen ?

Ja.

>  Ist es bis hier hin richtig ?

Ja. Das Zeichen [mm] $\lambda$ [/mm] gibst Du als \ lambda ein.

>  
> iii) Die Determinante ist das Produkt der Skalare auf der
> Diagonalen der Matrix A also gleich -1.

Richtig.  

> mfg zahlenfreund
>  

Ich haette noch ein Frage: Ist bei euch ein Skalarprodukt tatsaechlich auf [mm] $\IR^{n}\backslash\{0\}$ [/mm] definiert? Oder meinst Du, dass [mm] $a\neq [/mm] 0$ ist?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]