matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraIsometrie und Spiegelung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Isometrie und Spiegelung
Isometrie und Spiegelung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Isometrie und Spiegelung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:31 Do 15.06.2006
Autor: Riley

Aufgabe
Man versehe den Raum [mm] C^2 [/mm] mit dem Standardskalarprodukt <,>;
eine Abbildung [mm] \psi \in End_C [/mm] (V) sei gegeben durch
[mm] A^{\psi} (e_1,e_2) [/mm] = [mm] \bruch{1}{\wurzel{2}} \pmat{ 1 & i \\ i & 1 } [/mm]
Man zeige:
a) [mm] \psi [/mm] ist Isometrie
b) Man bestimme eine Matrix C [mm] \in [/mm] U(2,C) mit [mm] \sigma(C)^t [/mm] A C = Diagonalmatrix
c) Man beschreibe [mm] \psi [/mm] als Produkt von zwei Spiegelungen.

Guten Abend!
also bei der a) müsste doch gelten wenn [mm] \psi [/mm] Isometrie ist:
[mm] A^t \overline{A} [/mm] = E.
d.h. [mm] \bruch{1}{\wurzel{2}} \pmat{ 1 & i \\ i & 1 } \pmat{ 1 & -i \\ -i & 1 }= \bruch{1}{\wurzel{2}}\pmat{ 2 & 0 \\0 & 2 } [/mm] was hab ich falsch gemacht, warum bekomm ich nicht die einheitsmatrix raus?

bei Teil b) hab ich das charakteristische Polynom berechnet:
[mm] det(\pmat{ X-\bruch{1}{\wurzel{2}} & \bruch{-i}{\wurzel{2}} \\\bruch{-i}{\wurzel{2}} & X - \bruch{1}{\wurzel{2}}}) [/mm]
= [mm] (X-\bruch{1}{\wurzel{2})²}- \bruch{i²}{2} [/mm]
= X² - [mm] \bruch{2}{\wurzel{2}} [/mm] X + 1

und jetzt weiß ich leider nicht wie ich davon Nullstellen herausbekomm??? weil ohne die kann ich ja den ganzen rest der aufgabe nicht lösen...
würde mich sehr freuen, wenn ihr mir weiterhelfen würdet!!

viele grüße
riley

        
Bezug
Isometrie und Spiegelung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:17 Sa 01.07.2006
Autor: Fulla

hi riley!

bei der a) hast du ein [mm] \bruch{1}{\wurzel{2}} [/mm] unterschlagen. dieser faktor kommt doch von beiden matrizen... dann kommt auch die einheitsmatrix raus...

zur b):
du hast richtig gerechnet: [mm] \chi(x)=x^{2}-\wurzel{2}x+1 [/mm] und die nullstellen kannst du doch ganz normal mit der lösungsformel ausrechen! du bekommst zwar eine [mm] \wurzel{-2} [/mm] aber die kann man ja zu [mm] i\wurzel{2} [/mm] umformen...


ich hoffe, ich konnte dir helfen, auch wenn die zeit schon abgelaufen war...
lieben gruß,
Fulla

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]