matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitIst f stetig in (0,0) P Difbar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stetigkeit" - Ist f stetig in (0,0) P Difbar
Ist f stetig in (0,0) P Difbar < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ist f stetig in (0,0) P Difbar: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 13:27 Di 31.01.2023
Autor: Gufg60

Aufgabe
Es sei [mm] f:(0,∞)^2 [/mm] R. Gegeben durch die Funktion [mm] f(x,y)=x√y/x^2+y [/mm] falls x,y ungleich 0 und 0 falls x,y = 0 ist. Ist f stetig im Punkt 0,0 ?

Wie löse ich diese Aufgabe kann ich hierfür einfach den Limes benutzen ?
Also lim von [mm] (xsqrt(y)/x^2+y)=0 [/mm]
und lim (0)=0 ?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ist f stetig in (0,0) P Difbar: Antwort
Status: (Antwort) fertig Status 
Datum: 13:52 Di 31.01.2023
Autor: fred97


> Es sei [mm]f:(0,)^2[/mm] R. Gegeben durch die Funktion
> [mm]f(x,y)=x√y/x^2+y[/mm] falls x,y ungleich 0 und 0 falls x,y = 0
> ist. Ist f stetig im Punkt 0,0 ?
>  Wie löse ich diese Aufgabe kann ich hierfür einfach den
> Limes benutzen ?
>  Also lim von [mm](xsqrt(y)/x^2+y)=0[/mm]
>  und lim (0)=0 ?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Dem Quelltext entnehme ich:

[mm] $f:(0,\infty)^2 \to \IR.$ [/mm]

$f(x,y)= [mm] \frac{x \sqrt{y}}{x^2+y}$ [/mm] , falls $(x,y) [mm] \ne [/mm] (0,0)$

$f(0,0) =0.$

Schau Dir mal an, was [mm] $f(x,x^2)$ [/mm] treibt, wenn $x [mm] \to [/mm] 0+0$ strebt.

Bezug
        
Bezug
Ist f stetig in (0,0) P Difbar: Antwort
Status: (Antwort) fertig Status 
Datum: 17:00 Di 31.01.2023
Autor: HJKweseleit

f(x,y) = [mm] \frac{x \sqrt{y}}{x^2+y} [/mm]

Allgemein solltest du bei solchen Aufgaben in 4 Schritten vorgehen:

1. Setze x auf 0, y [mm] \ne [/mm] 0 und bilde dann [mm] \limes_{y\rightarrow 0}f(0,y), [/mm] wobei du i.A. vorher kürzen kannst.
2. Setze y auf 0, x [mm] \ne [/mm] 0 und bilde dann [mm] \limes_{x\rightarrow 0}f(x,0), [/mm] wobei du i.A. vorher kürzen kannst.
3. Setze x auf a*y, a [mm] \ne [/mm] 0 und bilde dann [mm] \limes_{y\rightarrow 0}f(ay,y), [/mm] wobei du i.A. vorher kürzen kannst.
4. Setze y auf ax, a [mm] \ne [/mm] 0 und bilde dann [mm] \limes_{y\rightarrow 0}f(x,ax), [/mm] wobei du i.A. vorher kürzen kannst.

Wenn alle Ergebnisse übereinstimmen, ist dies ein starkes Indiz dafür, dass die Funktion in (0,0) stetig ist. Wenn auch nur zwei vorneinander abweichen, ist sie dort unstetig.


Bezug
                
Bezug
Ist f stetig in (0,0) P Difbar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:27 Di 31.01.2023
Autor: fred97


> f(x,y) = [mm]\frac{x \sqrt{y}}{x^2+y}[/mm]
>  
> Allgemein solltest du bei solchen Aufgaben in 4 Schritten
> vorgehen:
>  
> 1. Setze x auf 0, y [mm]\ne[/mm] 0 und bilde dann
> [mm]\limes_{y\rightarrow 0}f(0,y),[/mm] wobei du i.A. vorher kürzen
> kannst.
>  2. Setze y auf 0, x [mm]\ne[/mm] 0 und bilde dann
> [mm]\limes_{x\rightarrow 0}f(x,0),[/mm] wobei du i.A. vorher kürzen
> kannst.
>  3. Setze x auf a*y, a [mm]\ne[/mm] 0 und bilde dann
> [mm]\limes_{y\rightarrow 0}f(ay,y),[/mm] wobei du i.A. vorher
> kürzen kannst.
>  4. Setze y auf ax, a [mm]\ne[/mm] 0 und bilde dann
> [mm]\limes_{y\rightarrow 0}f(x,ax),[/mm] wobei du i.A. vorher
> kürzen kannst.
>  
> Wenn alle Ergebnisse übereinstimmen, ist dies ein starkes
> Indiz dafür, dass die Funktion in (0,0) stetig ist.

Das ist doch Unsinn

>Wenn

> auch nur zwei vorneinander abweichen, ist sie dort
> unstetig.
>  


Bezug
                
Bezug
Ist f stetig in (0,0) P Difbar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:06 Mi 01.02.2023
Autor: fred97


> f(x,y) = [mm]\frac{x \sqrt{y}}{x^2+y}[/mm]
>  
> Allgemein solltest du bei solchen Aufgaben in 4 Schritten
> vorgehen:
>  
> 1. Setze x auf 0, y [mm]\ne[/mm] 0 und bilde dann
> [mm]\limes_{y\rightarrow 0}f(0,y),[/mm] wobei du i.A. vorher kürzen
> kannst.
>  2. Setze y auf 0, x [mm]\ne[/mm] 0 und bilde dann
> [mm]\limes_{x\rightarrow 0}f(x,0),[/mm] wobei du i.A. vorher kürzen
> kannst.
>  3. Setze x auf a*y, a [mm]\ne[/mm] 0 und bilde dann
> [mm]\limes_{y\rightarrow 0}f(ay,y),[/mm] wobei du i.A. vorher
> kürzen kannst.
>  4. Setze y auf ax, a [mm]\ne[/mm] 0 und bilde dann
> [mm]\limes_{y\rightarrow 0}f(x,ax),[/mm] wobei du i.A. vorher
> kürzen kannst.
>  
> Wenn alle Ergebnisse übereinstimmen, ist dies ein starkes
> Indiz dafür, dass die Funktion in (0,0) stetig ist. Wenn
> auch nur zwei vorneinander abweichen, ist sie dort
> unstetig.
>  

Bei obiger Funktion sind alle vier Ergebnisse $=0$, stimmen also überein.

In eimem Indizienprozess muss der Angeklagte allerdings freigesprochen werden, denn obige Funktion ist in $(0,0)$ nicht stetig.

Bezug
                        
Bezug
Ist f stetig in (0,0) P Difbar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:22 Mi 01.02.2023
Autor: HJKweseleit


> > f(x,y) = [mm]\frac{x \sqrt{y}}{x^2+y}[/mm]
>  >  
> > Allgemein solltest du bei solchen Aufgaben in 4 Schritten
> > vorgehen:
>  >  
> > 1. Setze x auf 0, y [mm]\ne[/mm] 0 und bilde dann
> > [mm]\limes_{y\rightarrow 0}f(0,y),[/mm] wobei du i.A. vorher kürzen
> > kannst.
>  >  2. Setze y auf 0, x [mm]\ne[/mm] 0 und bilde dann
> > [mm]\limes_{x\rightarrow 0}f(x,0),[/mm] wobei du i.A. vorher kürzen
> > kannst.
>  >  3. Setze x auf a*y, a [mm]\ne[/mm] 0 und bilde dann
> > [mm]\limes_{y\rightarrow 0}f(ay,y),[/mm] wobei du i.A. vorher
> > kürzen kannst.
>  >  4. Setze y auf ax, a [mm]\ne[/mm] 0 und bilde dann
> > [mm]\limes_{y\rightarrow 0}f(x,ax),[/mm] wobei du i.A. vorher
> > kürzen kannst.
>  >  
> > Wenn alle Ergebnisse übereinstimmen, ist dies ein starkes
> > Indiz dafür, dass die Funktion in (0,0) stetig ist. Wenn
> > auch nur zwei vorneinander abweichen, ist sie dort
> > unstetig.
>  >  
>
> Bei obiger Funktion sind alle vier Ergebnisse [mm]=0[/mm], stimmen
> also überein.
>  
> In eimem Indizienprozess muss der Angeklagte allerdings
> freigesprochen werden, denn obige Funktion ist in [mm](0,0)[/mm]
> nicht stetig.

Ja, du hattest ja schon den Lösungsweg angegeben.

Obiges Verfahren hat sofortigen Erfolg bei einer Abweichung (hier z.B., wenn man [mm] y=t^2 [/mm] substituiert, was deiner Lösung entspricht). Bei fehlender Abweichung ist das natürlich kein Beweis für Stetigkeit.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]