matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenJordanform?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - Jordanform?
Jordanform? < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jordanform?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:53 So 14.03.2010
Autor: lauralikesmath

Aufgabe
A = [mm] \pmat{ 1 & 2 \\ 0 & 1 } [/mm]
EW von A: 1 (doppelt)

D = [mm] \pmat{ 1 & 1 \\ 0 & 1 } [/mm]

Es gilt

[mm] S^{-1}*A*S [/mm] = D

Wie sieht S aus?

Hallo!

Aus der Musterlösung weiß ich dass S = [mm] \pmat{ 1 & 0 \\ 0 & 1/2 } [/mm]
Aber wie komme ich darauf?  Wikipedia erzählt etwas von einem charakteristischen Polynom und Basistransformationen - aber die Musterlösung schreibt lediglich "Wähle die Koordinaten so dass A ein Jordanblock wird". Mehr nicht. Ich weiß nicht mal, was mit Koordinaten gemeint ist.

Gibt es also da einen Weg mit dem man das Problem in diesem Fall recht schnell lösen kann?

Der Weg bei Wikipedia ist mir leider nicht so ganz klar, weil auch sehr umfangreich.


Liebe Grüße
Laura


        
Bezug
Jordanform?: Antwort
Status: (Antwort) fertig Status 
Datum: 18:11 So 14.03.2010
Autor: pelzig


> A = [mm]\pmat{ 1 & 2 \\ 0 & 1 }[/mm]
>  EW von A: 1 (doppelt)
>  
> D = [mm]\pmat{ 1 & 1 \\ 0 & 1 }[/mm]
>  
> Es gilt
>  
> [mm]S^{-1}*A*S[/mm] = D
>  
> Wie sieht S aus?
>  Hallo!
>  
> Aus der Musterlösung weiß ich dass S = [mm]\pmat{ 1 & 0 \\ 0 & 1/2 }[/mm]
>  
> Aber wie komme ich darauf?  Wikipedia erzählt etwas von
> einem charakteristischen Polynom und Basistransformationen
> - aber die Musterlösung schreibt lediglich "Wähle die
> Koordinaten so dass A ein Jordanblock wird". Mehr nicht.

Ja, die Musterlösung geht anscheinend davon aus, dass du das "Kochrezept zur Berechnung einer Jordanbasis" bereits kennst. Das ist genau das, was auf Wikipedia steht und nein, es gibt keinen einfachen Weg. Jordansche Normalform ist nunmal schwierig zu berechnen. Wenn ich dir irgendeine "Zufallsmatrix" hinkotzen würde, dann würdest du im Allgemeinen mit Papier und Bleistift ewig brauchen, selbst wenn du die Eigenwerte exakt kennst.

> Ich weiß nicht mal, was mit Koordinaten gemeint ist.

Mit "Wahl von Koordinaten" ist hier die Wahl einer Basis gemeint. In "den neuen Koordinaten" wird aus $A$ dann [mm] $S^{-1}A [/mm] S$. Diese ganze Sprechweise wird dir sehr viel klarer werden wenn du später mit Mannigfaltigkeiten rumhantierst.

Gruß, Robert

Bezug
        
Bezug
Jordanform?: Antwort
Status: (Antwort) fertig Status 
Datum: 10:20 Mo 15.03.2010
Autor: angela.h.b.

Hallo,

> A = [mm]\pmat{ 1 & 2 \\ 0 & 1 }[/mm]
>  EW von A: 1 (doppelt)

Dann stellt man fest, daß dim Kern (A-E)=1 ist, und weiß aufgrund vorhergehender Studien:

die JNF ist

>  
> D = [mm]\pmat{ 1 & 1 \\ 0 & 1 }[/mm].

>  
> Es gilt
>  
> [mm]S^{-1}*A*S[/mm] = D
>  
> Wie sieht S aus?

Hierfür braucht man die Jordanbasis, also die Basis, bzgl. derer die Abbildungsmatrix D ist.

Schauen wir uns D an:

der erste Vektor der fraglichen Basis wird auf sich selbst abgebildet, ist also ein Eigenvektor [mm] \vec{v} [/mm] zum Eigenwert 1.
Er lautet?

Für den zweiten Basisvektor  [mm] \vec{b}:=\vektor{b_1\\b_2} [/mm] gilt:  

[mm] A*\vec{b}=\vec{v} [/mm] + [mm] \vec{b} [/mm]

<==> [mm] (A-E)\vec{b}=\vec{v}. [/mm]

Damit steht ein Plan für die Bestimmung einer Jordanbasis.

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]