matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesJordannormalform
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra Sonstiges" - Jordannormalform
Jordannormalform < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Jordannormalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:55 Mi 25.04.2012
Autor: unibasel

Aufgabe
Bestimme eine Jordan-Basis und die zugehörige Normalform für die folgende nilpotente Matrix:
a) [mm] \pmat{ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 } [/mm]

Also zu a) (Stimmt dies denn?:))

[mm] e_{1} \mapsto e_{4} [/mm]
[mm] e_{2} \mapsto [/mm] 0
[mm] e_{3} \mapsto e_{6} [/mm]
[mm] e_{4} \mapsto e_{2} [/mm]
[mm] e_{5} \mapsto e_{7} [/mm]
[mm] e_{6} \mapsto e_{5} [/mm]
[mm] e_{7} \mapsto [/mm] 0

[mm] e_{1} \mapsto e_{4} \mapsto e_{2} \mapsto [/mm] 0
[mm] e_{3} \mapsto e_{6} \mapsto e_{5} \mapsto e_{7} \mapsto [/mm] 0

Die Jordanbasis B:
[mm] B={e_{3},e_{6},e_{5},e_{7},e_{1},e_{4},e_{2}} [/mm]

Wie bilde ich die Jordannormalform?
Also nachgelesen habe ich:

[mm] J=\pmat{ J_{1} \\ & ... & \\ & & J_{k} } [/mm]

Und als [mm] J_{1} [/mm] ... [mm] J_{k} [/mm] bezeichnet man die Jordankästchen.

Nun sind ja glaube ich die Eigenwerte in der Hauptdiagonale, wenn ich mich nicht irre... So muss ich also das charakteristische Polynom, die Eigenwerte und auch Eigenvektoren ausrechnen?
Oder wie sieht die Normalform dazu aus?

Danke für die Hilfe :)
mfg

        
Bezug
Jordannormalform: Antwort
Status: (Antwort) fertig Status 
Datum: 20:16 Mi 25.04.2012
Autor: MathePower

Hallo unibasel,

> Bestimme eine Jordan-Basis und die zugehörige Normalform
> für die folgende nilpotente Matrix:
>  a) [mm]\pmat{ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 }[/mm]
>  
> Also zu a) (Stimmt dies denn?:))
>  
> [mm]e_{1} \mapsto e_{4}[/mm]
>  [mm]e_{2} \mapsto[/mm] 0
>  [mm]e_{3} \mapsto e_{6}[/mm]
>  [mm]e_{4} \mapsto e_{2}[/mm]
>  [mm]e_{5} \mapsto e_{7}[/mm]
>  
> [mm]e_{6} \mapsto e_{5}[/mm]
>  [mm]e_{7} \mapsto[/mm] 0
>  
> [mm]e_{1} \mapsto e_{4} \mapsto e_{2} \mapsto[/mm] 0
>  [mm]e_{3} \mapsto e_{6} \mapsto e_{5} \mapsto e_{7} \mapsto[/mm] 0
>  
> Die Jordanbasis B:
>  [mm]B={e_{3},e_{6},e_{5},e_{7},e_{1},e_{4},e_{2}}[/mm]
>  


Ja, das stimmt.


> Wie bilde ich die Jordannormalform?
> Also nachgelesen habe ich:
>
> [mm]J=\pmat{ J_{1} \\ & ... & \\ & & J_{k} }[/mm]
>  
> Und als [mm]J_{1}[/mm] ... [mm]J_{k}[/mm] bezeichnet man die
> Jordankästchen.
>  
> Nun sind ja glaube ich die Eigenwerte in der
> Hauptdiagonale, wenn ich mich nicht irre... So muss ich
> also das charakteristische Polynom, die Eigenwerte und auch
> Eigenvektoren ausrechnen?
>  Oder wie sieht die Normalform dazu aus?
>  


Bilde

[mm]B^{-1}*\operatorname{obige\ Matrix}*B[/mm]


> Danke für die Hilfe :)
> mfg


Gruss
MathePower

Bezug
                
Bezug
Jordannormalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:39 Mi 25.04.2012
Autor: unibasel

Mmh okay danke. Kann man das nicht irgendwie anders lösen?

Weil B und [mm] B^{-1} [/mm] weiss ich nicht so genau, wie man das bestimmt...

Also mein B wären die Basisvektoren als Matrix und davon die Inverse?
Aber das geht doch nicht so richtig auf...

Bezug
                        
Bezug
Jordannormalform: Antwort
Status: (Antwort) fertig Status 
Datum: 20:43 Mi 25.04.2012
Autor: wieschoo

Bei mir passt es


[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
                                
Bezug
Jordannormalform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:46 Mi 25.04.2012
Autor: unibasel

Ahhhhh sooooooo :D
Ja super, danke vielmals!!
Das war ja herrlich einfach :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]