matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeKanal
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Extremwertprobleme" - Kanal
Kanal < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kanal: Korrektur
Status: (Frage) beantwortet Status 
Datum: 17:54 Sa 06.09.2008
Autor: AbraxasRishi

Aufgabe
Wie sind die Abmessungen des Querschnitts eines Kanals zu wählen , wenn dieser ein oben offenes symmetrisches Trapez mit dem Boschungswinkel  [mm] \alpha=75° [/mm] und dem Flächeninhalt [mm] A=10m^2 [/mm] ist, wobei der benetzte Umfang möglichst gering sein soll?


Hallo nochmal!

Da mein Ergebniss von dem im Lösungsbuch um einiges abweicht und ich keinen Fehler finde möchte ich euch um Hilfe bei der Korrektur bitten.

Meine Idee:

[Dateianhang nicht öffentlich]

[mm]10=tan(\alpha)x(c+x)\qquad c=\frac{10-tan(\alpha)x^2}{tan(\alpha)x}\qquad f(x)= \frac{10-tan(\alpha)x^2}{tan(\alpha)x}+\frac{2x}{cos(\alpha)}\qquad f'(x)=\frac{-tan^2(\alpha)x^2-10tan(\alpha)}{tan^2(\alpha)x^2}+\frac{2}{cos(\alpha)}=0\qquad x=\pm \sqrt{\frac{10sin(\alpha)}{-cos(\alpha)tan^2(\alpha)+2tan^2(\alpha)}}=\pm 0,631[/mm]

Vielen Dank!

Gruß

Angelika


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Kanal: Antwort
Status: (Antwort) fertig Status 
Datum: 18:50 Sa 06.09.2008
Autor: abakus


> Wie sind die Abmessungen des Querschnitts eines Kanals zu
> wählen , wenn dieser ein oben offenes symmetrisches Trapez
> mit dem Boschungswinkel  [mm]\alpha=75°[/mm] und dem Flächeninhalt
> [mm]A=10m^2[/mm] ist, wobei der benetzte Umfang möglichst gering
> sein soll?
>  
>
> Hallo nochmal!
>  
> Da mein Ergebniss von dem im Lösungsbuch um einiges
> abweicht und ich keinen Fehler finde möchte ich euch um
> Hilfe bei der Korrektur bitten.
>  
> Meine Idee:
>  
> [Dateianhang nicht öffentlich]
>  
> [mm]10=tan(\alpha)x(c+x)\qquad c=\frac{10-tan(\alpha)x^2}{tan(\alpha)x}\qquad f(x)= \frac{10-tan(\alpha)x^2}{tan(\alpha)x}+\frac{2x}{cos(\alpha)}\qquad f'(x)=\frac{-tan^2(\alpha)x^2-10tan(\alpha)}{tan^2(\alpha)x^2}+\frac{2}{cos(\alpha)}=0\qquad x=\pm \sqrt{\frac{10sin(\alpha)}{-cos(\alpha)tan^2(\alpha)+2tan^2(\alpha)}}=\pm 0,631[/mm]

Hallo,
die Ableitung scheint zu stimmen.
Gruß Abakus

>  
> Vielen Dank!
>  
> Gruß
>  
> Angelika
>  


Bezug
                
Bezug
Kanal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:01 Sa 06.09.2008
Autor: AbraxasRishi

Danke für die Korrektur![flowers]

In meinen Buch ist jedoch für x=0,8327m angegeben. Kann sein, dass der Taschenrechner so sehr abweicht oder wo liegt sonst der Fehler? Vielleicht bei den Nebenbedingungen?Ich finde auch nichts!

Danke für die Geduld!

Angelika

Bezug
                        
Bezug
Kanal: Antwort
Status: (Antwort) fertig Status 
Datum: 21:35 Sa 06.09.2008
Autor: Steffi21

Hallo,

[mm] f(x)=\bruch{10-x^{2}*tan(75^{0})}{x*tan(75^{0})}+\bruch{2x}{cos(75^{0})} [/mm]

[mm] f(X)=\bruch{2,6795}{x}-x+7,7274x [/mm]

[mm] f(x)=\bruch{2,6795}{x}+6,7274x [/mm]

jetzt haben wir nicht die Not, alle Winkelfunktionen mitzuschleppen

[mm] f'(x)=-\bruch{2,6795}{x^{2}}+6,7274 [/mm]

x=0,6311

das Ergebnis x=0,8327 entsteht, wenn der Kanal einen Deckel hat, es kommt also zum Umfang nach dazu +c+2x, die obere Seite vom Trapez, kannst es ja mal durchrechnen, aber hat ein Kanal einen Deckel?? Ich sage klar nein!!

Steffi

Bezug
                                
Bezug
Kanal: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:41 Sa 06.09.2008
Autor: AbraxasRishi

Vielen Dank Steffi!


> das Ergebnis x=0,8327 entsteht, wenn der Kanal einen Deckel
> hat, es kommt also zum Umfang nach dazu +c+2x, die obere
> Seite vom Trapez, kannst es ja mal durchrechnen, aber hat
> ein Kanal einen Deckel?? Ich sage klar nein!!

Ich auch!
Es wird wahrscheinlich ein Druck-Fehler bei den Ergebnissen sein...oder bei der Aufgabenstellung??


Gruß

Angelika

>  
> Steffi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]