matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraKern, Bild, Basen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Kern, Bild, Basen
Kern, Bild, Basen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kern, Bild, Basen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:53 Sa 10.02.2007
Autor: xsara

Aufgabe
Sei [mm] V:=\IR^4, W:=\IR^3 [/mm] und eine lineare Abbildung [mm] L:V \to W [/mm] gegeben durch
[mm] L(\vektor{x_1 \\ x_2 \\ x_3 \\ x_4}):= \pmat{ 2x_1 + x_2 -6x_3 -x_4 \\ 3x_1 +9x_2 +6x_3 +6x_4 \\ x_1 + 2x_2 +x_4 }. [/mm]
Bestimmen Sie ker(L) sowie Basen von ker(L) und im(L).

Hallo!

Mir ist klar, das ker(L):={v [mm] \in [/mm] V| L(v)=0}, also kann ich doch das Gleichungssystem wie folgt lösen:

[mm] \pmat{ 2 & 1 & -6 & -1 & |0 \\ 3 & 9 & 6 & 6 & |0 \\ 1 & 2 & 0 & 1 & |0 } \to \to \pmat{ 2 & 1 & -6 & -1 & |0 \\ 0 & -1 & -2 & -1 & |0 \\ 0 & 0 & 0 & 0 & |0} [/mm]

[mm] \Rightarrow x_4 [/mm] =  [mm] \alpha, x_3 [/mm] = [mm] \beta, x_2 [/mm] = [mm] -\alpha [/mm] -2 [mm] \beta, x_1 [/mm] = [mm] \alpha [/mm] + 4 [mm] \beta. [/mm]

Damit ist doch ker(L) = [mm] (\vektor{\alpha + 4 \beta \\ -\alpha -2 \beta \\ \beta \\ \alpha}), [/mm] oder?

Also muss doch auch [mm] {(\vektor{\alpha + 4 \beta \\ -\alpha -2 \beta \\ \beta \\ \alpha})} [/mm] eine Basis von ker(L) sein.



Zur Basis von im(L):
Setzt man [mm] w_1 [/mm] := [mm] (\vektor{2 \\ 3 \\ 1}), w_2 [/mm] := [mm] (\vektor{1 \\ 9 \\ 2}), w_3 [/mm] := [mm] (\vektor{-6 \\ 6 \\ 0}) [/mm] und [mm] w_4 [/mm] := [mm] (\vektor{-1 \\ 6 \\ 1}), [/mm]
dann stellt man fest, dass [mm] w_4 [/mm] = [mm] w_2 [/mm] - [mm] w_1. [/mm]
Die Vektoren [mm] w_1, w_2 [/mm] und [mm] w_3 [/mm] sind linear unabhängig. Also muss doch [mm] {(w_1, w_2, w_3 )} [/mm] eine Basis von im(L) sein, oder?

Danke fürs Nachrechnen!

xsara

        
Bezug
Kern, Bild, Basen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:07 Sa 10.02.2007
Autor: xsara

Aufgabe
Betrachten Sie die Basen [mm] B:={v_1, v_2, v_3, v_4} [/mm] von V und [mm] C:={w_1, w_2, w_3} [/mm] von W, wobei
[mm] v_1:=\vektor{1 \\ 0 \\ 0 \\ 0}, v_2:=\vektor{1 \\ 1 \\ 0 \\ 0}, v_3:=\vektor{1 \\ 1 \\ 1 \\ 0}, v_4:=\vektor{1 \\ 1 \\ 1 \\ 1}, w_1:=\vektor{1 \\ 2 \\ 0}, w_2:=\vektor{3 \\ 1 \\ 0}, w_3:=\vektor{0 \\ 0 \\ 5}. [/mm]
Geben Sie die Matrixdarstellung der linearen Abbildung L bezüglich der Basen B und C an.

Hallo!

Auch nach mehrmaligem Durchsehen meiner Unterlagen, ist mir noch immer unklar, was die Matrixdarstellung einer linearen Abbildung ist.

Kann mir da jemand weiter helfen?

Vielen Dank für eure Mühe!

xsara

Bezug
                
Bezug
Kern, Bild, Basen: Matrixdarstellung
Status: (Antwort) fertig Status 
Datum: 14:58 Sa 10.02.2007
Autor: clwoe

Hi,

also, du suchst also die Matrix dieser linearen Abbildung. Das bedeutet, das wenn du dann einen Vektor aus dem [mm] \IR^{4} [/mm] mit der Matrix multiplizierst du einen Vektor aus dem [mm] \IR^{3} [/mm] bekommst. Du hast auch schon deine Abbildungsvorschrift gegeben in deiner ersten Frage.

Nun nimmst du also deinen ersten Vektor [mm] v_{1} [/mm] her und setzt ihn in die Abbildungsvorschrift ein. Dann bekommst du einen neuen Vektor, nämlich das zugehörige Bild des ersten Basisvektors aus V in W. Wie du weißt, kann man wenn man das Bild der Basisvektoren kennt, jeden anderen Vektor dadurch erzeugen. Um nun die erste Spalte deiner gesuchten Abbildungsmatrix zu bekommen, nimmst du nun diesen ersten gerade erzeugten Vektor also das Bild deines ersten Basisvektors aus V und suchst diejenige Linearkombination der Basisvektoren aus W, die den berechneten Vektor erzeugen. Die Lösung dieses Gleichungssystems ist die erste Spalte deiner gesuchten Abbildungsmatrix. Und so machst du es auch mit den drei anderen Vektoren.
Ich rechne es dir anhand des ersten Vektors mal vor den Rest schaffst du sicherlich alleine.

Also.

Man nimmt den ersten Basisvektor [mm] v_{1} [/mm] her und setzt ihn in die Abbildungsvorschrift ein.

[mm] L(v_{1})=L(\pmat{ 1 \\ 0 \\ 0 \\ 0 })=\pmat{ 2 \\ 3 \\ 1 } [/mm]

Nun suchst du die Linearkombination der Basisvektoren aus W die den Vektor erzeugen.

[mm] a\pmat{ 1 \\ 2 \\ 0 }+b\pmat{ 3 \\ 1 \\ 0 }+c\pmat{ 0 \\ 0 \\ 5 }=\pmat{ 2 \\ 3 \\ 1 } [/mm]

Matrix aufstellen und lösen.

Als Lösung bekommt man, ich nenn den Vektor mal [mm] d_{1} [/mm] für Darstellungsmatrix, [mm] d_{1}= \pmat{ 1,4 \\ 0,2 \\ 0,2 } [/mm]

Dies ist der erste Spaltenvektor deiner gesuchten Darstellungsmatrix. Genauso machst du es mit den anderen drei Vektoren.

Ich hoffe es ist nun klarer geworden.

Gruß,
clwoe


Bezug
        
Bezug
Kern, Bild, Basen: Kern und Basis
Status: (Antwort) fertig Status 
Datum: 14:14 Sa 10.02.2007
Autor: clwoe

Hi,

also die ersten beiden Fragen hast du richtig beantwortet. Um den Kern zu berechnen, schreibst du die Vektoren in eine Matrix bringst die Matrix auf Zeilenstufenform und löst das zugehörige homogene Gleichungssystem. Da du hier Freiheitsgrade hast, hast du sozusagen eine Linearkombination aus zwei Vektoren für die Lösung und den kern der Abbildung. Die Basis des Kerns besteht dann gezwungenermaßen genau aus diesen beiden Vektoren oder aus dieser Linearkombination. Stimmt also alles.

Wenn du mit im(L) den Spaltenraum der Matrix meinst also das Bild der Abbildung, dann hast du dich vertan. Deine Idee ist aber richtig. Du schreibst die Vektoren in eine Matrix, bringst die Matrix auf Zeilenstufenform und liest die linear unabhängigen Spaltenvektoren ab. Diese sind die Basis des Spaltenraums. Du hättest die Matrix auf reduzierte Zeilenstufenform bringen müssen, dann hättest du sofort gesehen das nur der dritte und der vierte Vektor linear abhängig sind, sonst hättest du doch auch am Anfang nicht zwei Freiheitsgrade gehabt sondern nur einen. Und auch die Regel Zeilenrang=Spaltenrang muss dir sagen, dass es nur zwei linear unabhängige Vektoren sein können, denn der Zeilenrang ist 2, also auch der Spaltenrang. Nur welche Vektoren genau die linear unabhängigen sind, sieht man erst richtig wenn man die reduzierte Zeilenstufenform da stehen hat.

So, ich hoffe dies war nun genug Erklärung und Erläuterung.

Gruß,
clwoe


Bezug
                
Bezug
Kern, Bild, Basen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:13 Sa 10.02.2007
Autor: xsara

Lieber clwoe,

vielen Dank für deine Hilfe. Hat mir echt weitergeholfen!

LG

xsara

Bezug
        
Bezug
Kern, Bild, Basen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:48 Sa 10.02.2007
Autor: schachuzipus

Hallo

vielleicht noch eine kleine Anmerkung zur Schreibweise bei Aufgabe 1) zur Basis der Kernes von f.

Also du hast berechnet, dass ker(f) erzeugt wird von [mm] \{\vektor{\alpha + 4 \beta \\ -\alpha -2 \beta \\ \beta \\ \alpha}\} [/mm]

Das kann man etwas anders schreiben

[mm] \vektor{\alpha + 4 \beta \\ -\alpha -2 \beta \\ \beta \\ \alpha}=\vektor{\alpha \\ -\alpha \\ 0 \\ \alpha}+\vektor{ 4 \beta \\ -2 \beta \\ \beta \\ 0}=\alpha*\vektor{1 \\ -1 \\ 0 \\ 1}+\beta*\vektor{ 4 \\ -2 \\ 1 \\ 0} [/mm]

Also ist [mm] \{\vektor{1 \\ -1 \\ 0 \\ 1},\vektor{ 4 \\ -2 \\ 1 \\ 0}\} [/mm] eine Basis von ker(f)


Gruß


schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]