matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaschinenbauKinematik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Maschinenbau" - Kinematik
Kinematik < Maschinenbau < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kinematik: Funktion(-en) aufstellen
Status: (Frage) beantwortet Status 
Datum: 15:37 Mi 10.11.2010
Autor: yhope

Aufgabe
Punktmasse wird ruckfrei in Bewegung versetzt. Funktion a(t) wird als cos-Funktion angesetzt. Am Ende der Beschleunigungsphase [mm] t_{1} [/mm] wird Endgeschwindigkeit [mm] v_{1} [/mm] erreicht. a(t), v(t), s(t) Funktionen bestimmen.

Hallo alle miteinander,

sitz mal wieder ratlos vor einer TM- Hausarbeit. Mit Hilfe des Diagramms (siehe "Anhang") soll man eine a(t)-Funktion bestimmen, über welche man (meiner Meinung nach) durch Integration zu der v(t)- weiter zur s(t)-Funktion gelangen kann. Gesagt getan, kann ja nicht so schwer sein eine cos- Funktion aufzustellen.... habe ich mir gedacht. Naja, hatte so recht meine Mühe damit und stell mir nun die Frage (welche ich mir selbst nicht beantworten kann): Kann das richtig sein?

Meine Überlegungen vorerst:
- es handelt sich um eine "minus"-cosinus Funktion
- um [mm] \bruch{a_{max}}{2} [/mm] in y- Richtung verschoben
(
Zwischenergebnis:
f(x)= -cos(x)+ [mm] \bruch{a_{max}}{2} [/mm]
)
-Periodenlänge: [mm] \bruch{\pi}{t_{1}} [/mm]
-Streckung: [mm] a_{max} [/mm]


Fazit:  a(t)= - [mm] a_{max} [/mm] cos( [mm] \bruch{\pi}{t_{1}}*t [/mm] ) + [mm] \bruch{a_{max}}{2} [/mm]

Habe ich hier beim Aufstellen der Gleichung Fehler (jeglicher Art) gemacht oder etwas übersehen???
Ich wäre euch sehr dankbar für Hilfe, Anregungen etc.

Grüße
yhope


[Dateianhang nicht öffentlich]


Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Kinematik: Antwort
Status: (Antwort) fertig Status 
Datum: 15:51 Mi 10.11.2010
Autor: leduart

Hallo
Die Amplitude ist [mm] a_{max}/2 [/mm]
wenigstens bei t=0 hättest du ja übeprüfen können? a(0)=0
wieso Periode [mm] \pi/t1? [/mm]  setz mal t=t1!
Gruss leduart


Bezug
                
Bezug
Kinematik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:21 Mi 10.11.2010
Autor: yhope

erstmal vielen Dank für die schnelle Antwort!

> Hallo
>  Die Amplitude ist [mm]a_{max}/2[/mm]
>  wenigstens bei t=0 hättest du ja übeprüfen können?
> a(0)=0
>  wieso Periode [mm]\pi/t1?[/mm]  setz mal t=t1!
>  Gruss leduart
>  

also sprich: a(t)= [mm] -\bruch{a_{max}}{2} [/mm] cos [mm] (\bruch{\pi}{t}) [/mm]   ???

Muss die cos-Funktion aber nicht noch in y- Richtung (hier:a) verschoben werden???


Bezug
                        
Bezug
Kinematik: Korrekturen
Status: (Antwort) fertig Status 
Datum: 16:33 Mi 10.11.2010
Autor: Loddar

Hallo yhope!



> also sprich: a(t)= [mm]-\bruch{a_{max}}{2}[/mm] cos [mm](\bruch{\pi}{t})[/mm]    ???

[notok] Überdenke nochmal das Argument der Cosinus-Funktion.
Dort sollte ein Term stehen, der für [mm]t \ = \ t_1[/mm] den Wert [mm]2\pi[/mm] ergibt.


> Muss die cos-Funktion aber nicht noch in y- Richtung
> (hier:a) verschoben werden???

[ok] Richtig. Aber es wird wiederum nur um die Amplitude, also um [mm]\bruch{a_\max}{2}[/mm] verschoben.


Gruß
Loddar


Bezug
                                
Bezug
Kinematik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:45 Mi 10.11.2010
Autor: yhope


> [notok] Überdenke nochmal das Argument der
> Cosinus-Funktion.
>  Dort sollte ein Term stehen, der für [mm]t \ = \ t_1[/mm] den Wert
> [mm]2\pi[/mm] ergibt.

ok, wenn ich dich jetzt richtig verstanden habe, dann müsste es:
a(t)= [mm] -\bruch{a_{max}}{2} [/mm] cos ( [mm] \bruch{2\pi}{t_{1}}*t [/mm] ) + [mm] \bruch{a_{max}}{2} [/mm]
heißen.
Oder ???

Bezug
                                        
Bezug
Kinematik: sieht gut aus
Status: (Antwort) fertig Status 
Datum: 16:46 Mi 10.11.2010
Autor: Loddar

Hallo yhope!


So sieht es gut aus. [ok]


Gruß
Loddar


Bezug
                                                
Bezug
Kinematik: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:50 Mi 10.11.2010
Autor: yhope

Super, Vielen Dank!!!

Gruß yhope

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]