matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungKniffliges Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - Kniffliges Integral
Kniffliges Integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kniffliges Integral: kleiner Tipp
Status: (Frage) beantwortet Status 
Datum: 12:39 So 16.08.2009
Autor: AbraxasRishi

Aufgabe
[mm]\integral{\sqrt{1-\left(\frac{2e^x}{2e^{2x}-1}\right)^2}dx}[/mm]

Hallo!

Jetzt kenne ich die Integralrechnung seit einem Jahr, rechne dann und wann wieder mal eins und habe immer noch das Gefühl, sie nicht wirklich zu beherrschen.

Ich habe hier Substitutionen wie [mm]e^u=\frac{2e^x}{2e^{2x}-1}, cos(u)=\frac{2e^x}{2e^{2x}-1}, e^x=cos(u), sinh(u)=\frac{2e^x}{2e^{2x}-1}...[/mm]ausprobiert und bin nicht weitergekommen...
Könnte mir bitte jemand sagen ob irgendein Ansatz Zukunft hat bzw. einen kleinen Tipp geben in welche Richtung die Substitution gehen soll...(Bitte keine vollständige Substitutionsformel)

Gruß

Angelika

        
Bezug
Kniffliges Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 13:58 So 16.08.2009
Autor: rainerS

Hallo Angelika!

>
> [mm]\integral{\sqrt{1-\left(\frac{2e^x}{2e^{2x}-1}\right)^2}dx}[/mm]
>  Hallo!
>  
> Jetzt kenne ich die Integralrechnung seit einem Jahr,
> rechne dann und wann wieder mal eins und habe immer noch
> das Gefühl, sie nicht wirklich zu beherrschen.

Hmmm, beherrschen ist das falsche Wort, glaube ich. Es hilft einem nicht wirklich weiter zu wissen, dass für jeden stetigen Integranden das Integral existiert, wenn man die Tricks nicht kennt. Es gibt nämlich immer noch einen, den man noch nicht gesehen hat.

Integrieren ist eine Kunst, keine Technik ;-)

> Ich habe hier Substitutionen wie
> [mm]e^u=\frac{2e^x}{2e^{2x}-1}, cos(u)=\frac{2e^x}{2e^{2x}-1}, e^x=cos(u), sinh(u)=\frac{2e^x}{2e^{2x}-1}...[/mm]ausprobiert
> und bin nicht weitergekommen...
>  Könnte mir bitte jemand sagen ob irgendein Ansatz Zukunft
> hat bzw. einen kleinen Tipp geben in welche Richtung die
> Substitution gehen soll...(Bitte keine vollständige
> Substitutionsformel)

Ich würde erst einmal den Nenner [mm] $2e^{2x}-1$ [/mm] aus der Wurzel ziehen und die Terme im Inneren der Wurzel ausmultiplizieren. Da dann nur noch [mm] $e^{2x}$ [/mm] und [mm] $e^{4x}$ [/mm] übrigbleiben, bietet sich die Substitution [mm] $u=e^{2x}$ [/mm] an, um die e-Funktionen loszuwerden.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]