matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperKörper
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Körper
Körper < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:41 Mo 12.10.2009
Autor: pippilangstrumpf

Aufgabe
Sei K der Körper und [mm] K^m [/mm] der Vektorraum, welcher aus den m-Tupeln von Elementen aus K besteht, d.h. ein typisches Elment aus [mm] K^m [/mm] hat die Form [mm] (a_1, a_2, [/mm] ... , [mm] a_m) [/mm] mit [mm] a_1 [/mm] bis [mm] a_m [/mm] aus K.  

Wir verwenden oftmals in der Vorlesung [mm] K^m [/mm] allerdings wird auch machmal [mm] K^n [/mm] verwendet (Hierbei ist K der Körper und [mm] K^m [/mm] der Vektorraum, welcher aus den m bzw.n-Tupeln von Elementen aus K besteht, d.h. ein typisches Elment aus [mm] K^m [/mm] hat die Form [mm] (a_1, a_2, [/mm] ... , [mm] a_m) [/mm] mit [mm] a_1 [/mm] bis [mm] a_m [/mm] aus K). Das ist mir soweit klar. Aber kann mir jemand sagen, wann ich n bzw. m nehme, ist das völlig egal oder gibt es da feste Bestimmungen?
(vor allem wenn ich z.B. eine mxn-Matrix oder nxn habe)?

Danke.

        
Bezug
Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 17:56 Mo 12.10.2009
Autor: schachuzipus

Hallo Alexandra,

> Sei K der Körper und [mm]K^m[/mm] der Vektorraum, welcher aus den
> m-Tupeln von Elementen aus K besteht, d.h. ein typisches
> Elment aus [mm]K^m[/mm] hat die Form [mm](a_1, a_2,[/mm] ... , [mm]a_m)[/mm] mit [mm]a_1[/mm]
> bis [mm]a_m[/mm] aus K.
> Wir verwenden oftmals in der Vorlesung [mm]K^m[/mm] allerdings wird
> auch machmal [mm]K^n[/mm] verwendet (Hierbei ist K der Körper und
> [mm]K^m[/mm] der Vektorraum, welcher aus den m bzw.n-Tupeln von
> Elementen aus K besteht, d.h. ein typisches Elment aus [mm]K^m[/mm]
> hat die Form [mm](a_1, a_2,[/mm] ... , [mm]a_m)[/mm] mit [mm]a_1[/mm] bis [mm]a_m[/mm] aus K).
> Das ist mir soweit klar. Aber kann mir jemand sagen, wann
> ich n bzw. m nehme, ist das völlig egal [ok] oder gibt es da
> feste Bestimmungen?


Nein, feste Bestimmungen gibt's da nicht ...

>  (vor allem wenn ich z.B. eine mxn-Matrix oder nxn habe)?

Ich nehme an, das meinst du im Zusammenhang mit linearen Abbildungen zwischen Vektorräumen?!

Wenn du ne lineare Abbildung [mm] $f:\IK^n\to\IK^m$ [/mm] mit [mm] $f\left(\vektor{x_1\\x_2\\\vdots\\x_n}\right)=\vektor{y_1\\y_2\\\vdots\\y_m}$ [/mm] hast, so kannst du die (bzgl. gewählter Basen) durch eine Abbildungsmatrix $A$ beschreiben.

Diese hat das Format [mm] $m\times [/mm] n$ und Einträge aus [mm] $\IK$ [/mm]

Also [mm] $f\left(\vektor{x_1\\x_2\\\vdots\\x_n}\right)=A\cdot{}\vektor{x_1\\x_2\\\vdots\\x_n}=\vektor{y_1\\y_2\\\vdots\\y_m}$ [/mm]

Das kansnt du dir klarmachen, wenn du die "Formate" mal näher betrachtest
  
Es wird eine [mm] $m\times [/mm] n$-Matrix mit einem Spaltenvektor mit n Einträgen, also einer [mm] $n\times [/mm] 1$-Matrix multipliziert, heraus kommt also eine [mm] $m\times [/mm] 1$-Matrix, also ein Spaltenvektor mit m Einträgen.

Umgekehrt, wenn du eine lineare Abbildung [mm] $f:\IK^m\to\IK^n$ [/mm] hast.

Dort bekommst du dann entsprechend eine Abbildungsmatrix vom Format [mm] $n\times [/mm] m$

Allg. $V,W$ Vektorräume über einem Körper [mm] $\IK$ [/mm] mit $dim(V)=n, dim(W)=m$

Dann kannst du eine lineare Abbildung [mm] $f:V\to [/mm] W$ (bzgl. gegebener Basen) beschreiben durch eine [mm] $m\times [/mm] n$-Matrix (mit Einträgen aus [mm] $\IK$) [/mm]

> Danke.

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]