matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Körperberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathe Klassen 8-10" - Körperberechnung
Körperberechnung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körperberechnung: Frage
Status: (Frage) beantwortet Status 
Datum: 15:29 Do 31.03.2005
Autor: Kendra

In der zu lösenden Aufgabe habe ich einen Zylinder mit dem Radius r und der Höhe h, aus dem ein Kegel, mit der Spitze nach unten herausgeschnitten ist.
Nun soll ich den Rauminhalt des "Restkörpers" angeben.

Die zweite Aufgabenstellung lautet: Die Höhe h betrage nunmehr gerade r. Wie hoch muss ein zu einer Kugel vom Radius r gehöriger Kugelabschnitt sein, damit er den gleichen Rauminhalt besitzt?

Mein Rechenweg sieht bis jetzt folgendermaßen aus:

V(Zylinder)= G*h=pi*r²*h
V(Kegel)=1/3G*h=1/3pi*r²*h
V(Zylinder)-V(Kegel)=pi*r²*h-1/3pi*r²*h
V(Rest)=2/3pi*r³

Dies wäre dann der Rauminhalt des Restkörpers.
Nun im zweiten Aufgabenteil folgendes:

2/3pi*r³-1/3pi*h²*(3r-h)

Stimmt das soweit, oder habe da etwas übersehen? Und wie rechne ich nun weiter?

lg
Kendra

        
Bezug
Körperberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:59 Do 31.03.2005
Autor: spooky

Also, bei der ersten Aufgabe lautet die richtige Formel:
     V(Rest)=2/3phi*r²*h

Und bei der zweiten Aufgabe musst du die beiden Volumina (Restkörper und Kugelabschnitt) gleichsetzten.

2/3phi*r³=1/3phi*h²*(3r-h)


Bezug
        
Bezug
Körperberechnung: Schon fertig
Status: (Antwort) fertig Status 
Datum: 00:36 Fr 01.04.2005
Autor: leduart

Hallo Kendra
> Die zweite Aufgabenstellung lautet: Die Höhe h betrage
> nunmehr gerade r. Wie hoch muss ein zu einer Kugel vom
> Radius r gehöriger Kugelabschnitt sein, damit er den
> gleichen Rauminhalt besitzt?
>  
> Mein Rechenweg sieht bis jetzt folgendermaßen aus:
>  
> V(Zylinder)= G*h=pi*r²*h
>  V(Kegel)=1/3G*h=1/3pi*r²*h
>  V(Zylinder)-V(Kegel)=pi*r²*h-1/3pi*r²*h

>  [mm] V(Rest)=2/3pi*r^{3} [/mm]

so nur richtig mit r=h sonst  [mm] V(Rest)=2/3pi*r^{2} [/mm] *h

>  
> Dies wäre dann der Rauminhalt des Restkörpers.
>  Nun im zweiten Aufgabenteil folgendes:
>  
> 2/3pi*r³-1/3pi*h²*(3r-h)
>  
> Stimmt das soweit, oder habe da etwas übersehen? Und wie
> rechne ich nun weiter?

Ganz einfach: Gleich groß heisst Differenz ist Null! also  2/3pi*r³-1/3pi*h²*(3r-h)=0
und daraus h
Es sollte aber noch schneller gehen ,wenn du siehst dass 2/3pi*r³ Die Hälfze des Kugelvolumens ist.
Diese Entdeckung hat schon Archimedes gemacht, aber auf einem anderen Weg:
Er hat festgestellt, dass wenn man den Kegek mit der Spitze nach unten in den Zylinder stellt, und daneben eine Halbkugel malt (Rundung oben) dann hat das Gebilde Zylinder-Kegel auf jeder Höhe dieselbe
Querschnittsfläche und deshalb sind die Volumina gleich! So kam er aus den einfachen Vol von Zylinder und Kegel auf das Volumen der Kugel: Deshalb soll diese Figur auf seinem Grabstein sein! Du hast also was tolles rausgefunden! (Woher kennt ihr das Volumen der Kugel?)
Viel Spass
leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]