matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisKomplexe Konvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Komplexe Analysis" - Komplexe Konvergenz
Komplexe Konvergenz < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:07 So 26.11.2006
Autor: Hiroschiwa

Aufgabe
Zeigen sie die Konvergenz der Reihen [mm] \summe_{k=1}^{\infty} Re(\bruch{i^k}{k} [/mm] und [mm] \summe_{k=1}^{\infty} Im(\bruch{i^k}{k}. [/mm] Hinweis: Leibnitz Kriterium

Moin, mal wieder bereiten koplexe Reihen mir Probleme:

ich habe mir mal die ersten folgeglieder der kompletten komplexen reihe notiert

[mm] a_{k}= [/mm] (Re|Im), [mm] a_{1}= [/mm] (0|1), [mm] a_{2}= (\bruch{-1/2}|0), a_{3}= (0|\bruch{-1/3}), a_{1}= (\bruch{1/4}|0), [/mm]
dadruch zeigt sich das ich 2 alternierdende Reihen habe.

Das Leibnitz kriterium besagt:
Wenn [mm] \summe_{i=1}^{\infty}(-1)^k*a_k, [/mm] dann konvergiert die Reihen wenn [mm] a_k [/mm] monotone nullfoge, d.h. für mich: wenn [mm] \limes_{k\rightarrow\infty} a_k [/mm] = 0 ist.

Nur wie wende ich das jetzt auf meine komplexe Folge an?
Etwa [mm] \summe_{i=1}^{\infty}Re((i)^k*\bruch{1}{k}) [/mm] konvergiert da [mm] \limes_{k\rightarrow\infty}\bruch{1}{k}=0 [/mm] ist

        
Bezug
Komplexe Konvergenz: Nullen ignorieren
Status: (Antwort) fertig Status 
Datum: 21:40 So 26.11.2006
Autor: moudi

Hallo Alex

Bei der Folge [mm] $a_k=\Re(\frac{i^k}{k})$ [/mm] ist doch jedes zweites Glied gleich 0. Lässt du die Nullen weg, so bleibt eine alternierende Folge, auf die man das Leibnizkriterium anwenden kann.

Bei [mm] $a_k=\Im(\frac{i^k}{k})$ [/mm] ist es genau gleich.

mfG Moudi

Bezug
                
Bezug
Komplexe Konvergenz: Nachfrage
Status: (Frage) beantwortet Status 
Datum: 23:22 So 26.11.2006
Autor: Hiroschiwa

Ich möchte das jetzt so aufschreiben für die Korrektur:

am Anfang halt ein paar anfangswerte bis k=4

dann

Für gerade k gilt: k=2*p [mm] p\in\IN [/mm]

[mm] \summe_{p=1}^{\infty}(-1)^{2*p}*\bruch{-1}{2*p} [/mm]
[mm] \limes_{p\rightarrow\infty}\bruch{-1}{2*p}=0 [/mm] (i)

Für ungerade k gilt: k=2*p-1 [mm] p\in\IN [/mm]

[mm] \summe_{p=1}^{\infty}(-1)^{2*p-1}*\bruch{-1}{2*p-1} [/mm]
[mm] \limes_{p\rightarrow\infty}\bruch{-1}{2*p-1}=0 [/mm] (ii)

i und ii zeigen Konvergenz der alterniereden Reihen nach Leibniz


Frage 1: Ist das so korrekt?
Frage 2: Wie sieht das aus mit der ganzen komplexen reihe [mm] a_k=\(\frac{i^k}{k} [/mm] ?
Konvergiert sie, vielleicht sogar absolut?
Ich würde sagen ja, denn sie dreht sich mit immer kürzer werdenden Zeigern um O

Bezug
                        
Bezug
Komplexe Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 13:15 Mo 27.11.2006
Autor: moudi


> Ich möchte das jetzt so aufschreiben für die Korrektur:
>  
> am Anfang halt ein paar anfangswerte bis k=4
>  
> dann
>  
> Für gerade k gilt: k=2*p [mm]p\in\IN[/mm]
>  
> [mm]\summe_{p=1}^{\infty}(-1)^{2*p}*\bruch{-1}{2*p}[/mm]
>  [mm]\limes_{p\rightarrow\infty}\bruch{-1}{2*p}=0[/mm] (i)
>  
> Für ungerade k gilt: k=2*p-1 [mm]p\in\IN[/mm]
>  
> [mm]\summe_{p=1}^{\infty}(-1)^{2*p-1}*\bruch{-1}{2*p-1}[/mm]
>  [mm]\limes_{p\rightarrow\infty}\bruch{-1}{2*p-1}=0[/mm] (ii)
>  
> i und ii zeigen Konvergenz der alterniereden Reihen nach
> Leibniz
>  
>
> Frage 1: Ist das so korrekt?

Ja es sieht korrekt aus (habe aber die Details nicht kontrolliert).

>  Frage 2: Wie sieht das aus mit der ganzen komplexen reihe
> [mm]a_k=\(\frac{i^k}{k}[/mm] ?
>  Konvergiert sie, vielleicht sogar absolut?

Nein, denn [mm] $\sum_k |a_k|=\sum_k \left|\frac{i^k}{k}\right|=\sum_k \frac{1}{k}$ [/mm] divergiert.

Eine komplexe Reihe (Folge) konvergiert genau dann, wenn Realteil und Imaginärteil konvergieren.

mfG Moudi

>  Ich würde sagen ja, denn sie dreht sich mit immer kürzer
> werdenden Zeigern um O


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]