matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisKomplexe Zahl in e^-Form
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Komplexe Zahl in e^-Form
Komplexe Zahl in e^-Form < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahl in e^-Form: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:15 Fr 23.02.2007
Autor: Marty1982

Aufgabe
a)Ermitteln Sie [mm] z_3 [/mm] und tragen Sie es in die GZE ein!
b)Stellen Sie [mm] z_3 [/mm] in der Eulerschen Form da!

Kein Taschenrechner erlaubt!

Gegeben:
[mm] z_1=3\*(\cos(240°)+i\*\sin(240°)) [/mm]
[mm] z_2=2\*(\cos(135°)+i\*\sin(135°)) [/mm]
Gesucht:
[mm] z_3=-3\*z_1 [/mm] + [mm] 2\*i\*z_2 [/mm]

Mein Lösungsweg:

[mm] z_3=-9\*(\cos(240°)+i\*\sin(240°))+i\*4\*(\cos(135°)+i\*\sin(135°)) [/mm]
[mm] z_3=-9\*(\cos(240°)+i\*\sin(240°))+*4\*(i\*\cos(135°)-1\*\sin(135°)) [/mm]
[mm] z_3=-9\*(-\bruch{1}{2}+i\*(-\bruch{1}{2}\wurzel{3}))+*4\*(i\*(-\bruch{1}{2}\wurzel{2})-\bruch{1}{2}\wurzel{2}) [/mm]
Nun erstmal Ordnung reinbringen:
[mm] z_3=-9\*(-\bruch{1}{2}+i\*(-\bruch{1}{2}\wurzel{3}))+*4\*(-\bruch{1}{2}\wurzel{2}-i\*(-\bruch{1}{2}\wurzel{2})) [/mm]
Ausmultipliziert:
[mm] z_3=(\bruch{9}{2}+\bruch{9}{2}\wurzel{3}i)+(-\bruch{4}{2}\wurzel{2}-\bruch{4}{2}\wurzel{2}i) [/mm]
[mm] z_3=\bruch{9-4\wurzel{2}}{2}+i\*(\bruch{9}{2}\wurzel{3}-\bruch{4}{2}\wurzel{3}) [/mm]

Soweit so gut, ich habe das Ergebnis mittels Taschenrechner prüfen können und es stimmt.

Nun die Frage darf ich in der trigonomischen Form anstatt z.B. cos(240) einfach [mm] -\bruch{1}{2} [/mm] schreiben um ein Ergebnis herauszubekommen? Es ist ja die Umwandlung in die kartesische Form und daher erlaubt oder sehe ich es falsch? :-)

Und wie stelle ich das Ergebnis ohne Taschenrechner in der GZE dar? Gibt es dort Vereinfachungen?

Ach ja, und wie wandle ich nun das Ergebnis von [mm] z_3 [/mm] in die Eulersche Form um?
[mm] z=r\*(\cos\alpha+i\*\sin\alpha)=r\*e^{i\alpha} [/mm] ist bekannt aber wie wird es hier angewendet?

Vielen Dank im Voraus!

Ich habe die Frage in keinem anderem Forum gestellt.

Dank und Gruß, Marty

        
Bezug
Komplexe Zahl in e^-Form: Tipp
Status: (Antwort) fertig Status 
Datum: 13:15 Fr 23.02.2007
Autor: matzematisch

Hallo,

im Grunde ganz einfach:
Du weisst: $cos$ ist der Realteil, $sin$, der Imaginärteil, also [mm] $cos(it)=Re(e^{it})$ [/mm] und [mm] $sin(it)=Im(e^{it})$ [/mm]
Das liest Du einfach aus der Darstellung von [mm] $z_3$. [/mm] Damit kannst Du [mm] $\alpha$ [/mm] berechnen und brauchst das dann nur noch einzusetzen.

> Ach ja, und wie wandle ich nun das Ergebnis von [mm]z_3[/mm] in die
> Eulersche Form um?
>  [mm]z=r\*(\cos\alpha+i\*\sin\alpha)=r\*e^{i\alpha}[/mm] ist bekannt
> aber wie wird es hier angewendet?

Grüße ....

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]