matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgorithmische GeometrieKomplexität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Algorithmische Geometrie" - Komplexität
Komplexität < Algorithm. Geometrie < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmische Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexität: Sichtbarkeitsgraph
Status: (Frage) beantwortet Status 
Datum: 12:29 Fr 21.07.2006
Autor: Bastiane

Hallo schon wieder! ;-)

Erstmal eine etwas allgemeinere Frage:
Wenn es heißt, "etwas hat die Komplexität sowieso", dann geht es quasi um die Anzahl der Ecken und Kanten oder so und nicht um die Komplexität des Algorithmus, den man nimmt, um etwas aufzubauen oder so!?

Falls die Frage nicht ganz klar ist, wird sie wahrscheinlich klar, wenn ihr euch []das hier mal anschaut. Davon handelt nämlich auch meine eigentliche Frage. Und zwar steht dort: "da der Sichtbarkeitsgraph selber mindestens [mm] O(n^2) [/mm] hat". Die beiden Beispiele sind mir klar, allerdings habe ich Probleme mit dem O. Bei mir im Skript steht, dass der Sichtbarkeitsgraph die Komplexität [mm] \Omega(n^2) [/mm] hat. Ist das ein Druckfehler? Oder ist das in diesem Fall dasselbe? Also ich habe das immer so verstanden, dass [mm] \Omega [/mm] doch eine untere Schranke ist. Und wenn es doch Beispiele gibt, wo es weniger Kanten sind, dann kann doch [mm] n^2 [/mm] keine untere Schranke sein, oder? [mm] O(n^2) [/mm] würde hier meiner Meinung nach viel mehr Sinn machen, denn mehr als [mm] n^2 [/mm] kann es ja nicht geben, weil dann schon jedes mit jedem verbunden ist. Allerdings verstehe ich dann nicht, warum dort steht "mindestens [mm] O(n^2)"!? [/mm] [kopfkratz]

Irgendwie bekomme ich das mit dem O und dem [mm] \Omega [/mm] nicht in meinen Kopf hinein. [haee]

Vielleicht kann mir das ja nochmal jemand erklären.

viele Grüße
Bastiane
[cap]





        
Bezug
Komplexität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:22 So 23.07.2006
Autor: sylle82

Die Komplexität eines Algorithmus beschreibt meines Erachtens die Anzahl der nötigen Operationen (oder Schritte) wie Multiplikation, Division oder Vergleiche, die nötig sind, um eine Aufgabe zu lösen.

Dabei ist $ O $ die obere Schranke (ein Algorithmus braucht bestimmt nicht mehr Schritte als dort angegeben) und $ [mm] \Omega [/mm] $ die untere Schranke für die Komplexität.


Bezug
                
Bezug
Komplexität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:52 Mi 02.08.2006
Autor: Bastiane

Hallo!

> Die Komplexität eines Algorithmus beschreibt meines
> Erachtens die Anzahl der nötigen Operationen (oder
> Schritte) wie Multiplikation, Division oder Vergleiche, die
> nötig sind, um eine Aufgabe zu lösen.

Ja, aber wieso hat denn dann ein Sichtbarkeitsgraph eine Komplexität? Es geht ja nicht um die Komplexität eines Algorithmus um diesen zu berechnen, sondern um die Komplexität des Graphen selber!
  

> Dabei ist [mm]O[/mm] die obere Schranke (ein Algorithmus braucht
> bestimmt nicht mehr Schritte als dort angegeben) und [mm]\Omega[/mm]
> die untere Schranke für die Komplexität.

Ja, genau. Aber wieso kann dann [mm] \Omega(n^2) [/mm] eine untere Schranke sein, wenn es ein Beispiel dafür gibt, dass nur O(n) viele Kanten hat???

Kann mir das niemand erklären?

Viele Grüße
Bastiane
[cap]


Bezug
                        
Bezug
Komplexität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:31 Di 08.08.2006
Autor: mathiash

Liebe Bastiane,

die untere Schranke  [mm] \Omega [/mm] ( [mm] n^2) [/mm]
bedeutet nicht, dass jeder Sichtbarkeitsgraph so gross ist, sondern dass es eine Konstante c gibt, so dass fuer unendlich viele Werte von n
ein Beispiel existiert, bei dem der Sichtbarkeitsgraph mindestens Groesse [mm] c\cdot n^2 [/mm] hat.

Das heisst dann uebrigens ja auch, dass jeder Algorithmus, der den Sichtbarkeitsgraphen komplett erzeugt (Lista von Knoten und Kanten zB),
mindestens soviele Schritte braucht.

Gruss,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmische Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]