matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeKomposition Endomorphismus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Moduln und Vektorräume" - Komposition Endomorphismus
Komposition Endomorphismus < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komposition Endomorphismus: Tipp
Status: (Frage) beantwortet Status 
Datum: 10:38 Sa 25.04.2015
Autor: Ne0the0ne

Aufgabe
Sei V ein K-Vektorraum und f:V [mm] \to [/mm] V ein Endomorphismus von V mit
f [mm] \circ [/mm] f = f.

Zeigen Sie, dass dann V=ker(f) [mm] \oplus [/mm] im(f) gilt.

Hallo,
ich versuche mich gerade an der Aufgabe und habe auch schon ein wenig recherchiert; leider kam nichts brauchbares dabei raus.

Für Endomorphismus habe ich folgende Definition:
"Ein Endomorphismus ist ein Homomorphismus f:A→A einer mathematischen Struktur A in sich selbst."

Jetzt stehe ich erstmal vor dem Problem, überhaupt zu verstehen, was f [mm] \circ [/mm] f = f meint.

Hat da jemand einen Ratschlag für mich?

        
Bezug
Komposition Endomorphismus: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 10:51 Sa 25.04.2015
Autor: Ne0the0ne

Ich habe einen Fortschritt erzielt:

f [mm] \circ [/mm] f = f ist idempotent, also [mm] \forall v\in [/mm] V ergibt eine zweimalige Anwendung von f den gleichen Wert wie die einmalige Anwendung, also f(f(x)) = f(x)

Ich würde jetzt gerne an einem konkreten Vektorraum darstellen und würde dafür den R³ vorschlagen.

Bezug
        
Bezug
Komposition Endomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 10:52 Sa 25.04.2015
Autor: fred97


> Sei V ein K-Vektorraum und f:V [mm]\to[/mm] V ein Endomorphismus von
> V mit
>  f [mm]\circ[/mm] f = f.
>  
> Zeigen Sie, dass dann V=ker(f) [mm]\oplus[/mm] im(f) gilt.
>  Hallo,
>  ich versuche mich gerade an der Aufgabe und habe auch
> schon ein wenig recherchiert; leider kam nichts brauchbares
> dabei raus.
>  
> Für Endomorphismus habe ich folgende Definition:
> "Ein Endomorphismus ist ein Homomorphismus f:A→A einer
> mathematischen Struktur A in sich selbst."

Die math. Struktur A ist hier der Vektorraum V und f ist eine lineare Abbildung.


>  
> Jetzt stehe ich erstmal vor dem Problem, überhaupt zu
> verstehen, was f [mm]\circ[/mm] f = f meint.

Das bedeutet: f(f(x))=f(x) für alle x in V.


>  
> Hat da jemand einen Ratschlag für mich?


Für x [mm] \in [/mm] V gilt x=f(x)+(x-f(x)).  Klar: f(x) [mm] \in [/mm] Im(f). Zeige: x-f(x) [mm] \in [/mm] ker(f).

Dann hast Du: V= Im(f)+ker(f).

Jetzt ist nur noch zu zeigen:  Im(f) [mm] \cap [/mm] ker(f)= [mm] \{0\} [/mm]

FRED


Bezug
                
Bezug
Komposition Endomorphismus: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:56 Sa 25.04.2015
Autor: Ne0the0ne

So langsam verstehe ich es.
Ich probiere mich mal am Beweis.
Danke fred97. :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]