matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieKongruenz Eulersche Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Zahlentheorie" - Kongruenz Eulersche Funktion
Kongruenz Eulersche Funktion < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kongruenz Eulersche Funktion: Tipp
Status: (Frage) beantwortet Status 
Datum: 00:05 Fr 06.11.2020
Autor: sancho1980

Aufgabe
Seien m, n [mm] \in \IN [/mm] mit m, n > 1 und ggT(m, n) = 1. Beweisen Sie, dass [mm] m^{\phi(n)} [/mm] + [mm] n^{\phi(m)} \equiv [/mm] 1 (mod mn) ist.

Hallo,

ich weiß hier leider nicht mehr weiter. Ich denke, man müsste irgendwie zeigen können, dass ggT(mn, [mm] m^{\phi(n)} [/mm] + [mm] n^{\phi(m)}) [/mm] = 1. Aber wie? Oder führt hier ein anderer Weg weiter?

Gruß und Danke,
Martin

        
Bezug
Kongruenz Eulersche Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:56 Fr 06.11.2020
Autor: statler


> Seien m, n [mm]\in \IN[/mm] mit m, n > 1 und ggT(m, n) = 1. Beweisen
> Sie, dass [mm]m^{\phi(n)}[/mm] + [mm]n^{\phi(m)} \equiv[/mm] 1 (mod mn) ist.

Hallo,

>  
> ich weiß hier leider nicht mehr weiter. Ich denke, man
> müsste irgendwie zeigen können, dass ggT(mn, [mm]m^{\phi(n)}[/mm]
> + [mm]n^{\phi(m)})[/mm] = 1. Aber wie? Oder führt hier ein anderer
> Weg weiter?

ggT(mn, [mm]m^{\phi(n)}[/mm]  + [mm]n^{\phi(m)})[/mm] = 1 ist klar, reicht aber erstmal nicht. Wenn p|m, dann p [mm] $\nmid$ [/mm] n und folglich auch p [mm] $\nmid$ [/mm] ([mm]m^{\phi(n)} + n^{\phi(m)}[/mm])
Die Exponenten spielen also eine Rolle.

Gruß Dieter



Bezug
                
Bezug
Kongruenz Eulersche Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:30 Fr 06.11.2020
Autor: sancho1980

Hallo,
hast du noch einen weiteren Tipp für mich?
Danke und Gruß,
Martin

Bezug
                        
Bezug
Kongruenz Eulersche Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:58 Fr 06.11.2020
Autor: statler

siehe unten

Bezug
        
Bezug
Kongruenz Eulersche Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 08:33 Fr 06.11.2020
Autor: statler


> Seien m, n [mm]\in \IN[/mm] mit m, n > 1 und ggT(m, n) = 1. Beweisen
> Sie, dass [mm]m^{\phi(n)}[/mm] + [mm]n^{\phi(m)} \equiv[/mm] 1 (mod mn) ist.

Nach Lage der Dinge ist jedenfalls
[mm]m^{\phi(n)}[/mm] + [mm]n^{\phi(m)} \equiv[/mm] 0 + 1 [mm] $\equiv$ [/mm] 1 (mod m)
und
[mm]m^{\phi(n)}[/mm] + [mm]n^{\phi(m)} \equiv[/mm] 1 + 0 [mm] $\equiv$ [/mm] 1 (mod n)
Aber dann ist auch
[mm]m^{\phi(n)}[/mm] + [mm]n^{\phi(m)} \equiv[/mm] 1 (mod mn),
da (m, n) = 1.

Gruß Dieter

Bezug
                
Bezug
Kongruenz Eulersche Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:44 Fr 06.11.2020
Autor: sancho1980

Hallo,
ich muss hier nochmal nerven:

>  Aber dann ist auch
>  [mm]m^{\phi(n)}[/mm] + [mm]n^{\phi(m)} \equiv[/mm] 1 (mod mn),
>  da (m, n) = 1.

Wie kann man das sehen? Welche Regel kommt hier beim letzten Schritt zum Tragen?

Gruß und Danke,
Martin

Bezug
                        
Bezug
Kongruenz Eulersche Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:57 Fr 06.11.2020
Autor: statler

Mahlzeit!
>  
> >  Aber dann ist auch

>  >  [mm]m^{\phi(n)}[/mm] + [mm]n^{\phi(m)} \equiv[/mm] 1 (mod mn),
>  >  da (m, n) = 1.
>  
> Wie kann man das sehen? Welche Regel kommt hier beim
> letzten Schritt zum Tragen?

[mm] $m^{\phi(n)} [/mm] + [mm] n^{\phi(m)} [/mm] - 1$ ist durch m und durch n teilbar, dann ist es wegen (m, n) = 1 auch durch das Produkt teilbar. m und n haben verschiedene Primfaktoren!

Jetzt klarer?

Bezug
                                
Bezug
Kongruenz Eulersche Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:21 Fr 06.11.2020
Autor: sancho1980

Ja stimmt...
Das las sich vorhin wie so eine "geläufige" Rechenregel, aber in meinem Skript konnte ich das nirgends finden. Aber wenn ich so drüber nachdenke; halten wir fest:

Sei [mm] {p_{m_1}}^{e_{m_1}} \cdots {p_{m_x}}^{e_{m_x}} [/mm] die kanonische Primfaktorzerlegung von m und [mm] {p_{n_1}}^{e_{n_1}} \cdots {p_{n_y}}^{e_{n_y}} [/mm] die kanonische Primfaktorzerlegung von n. Wegen ggt(m,n) = 1 gilt [mm] ((p_{m_1} \not= p_{n_1}) \land \ldots \land (p_{m_1} \not= p_{n_y})) \land \ldots \land ((p_{m_x} \not= p_{n_1}) \land \ldots \land (p_{m_x} \not= p_{n_y})). [/mm] Dann folgt aus ((m [mm] \vert [/mm] a) [mm] \land [/mm] (n [mm] \vert [/mm] a)) dass ((m [mm] \vert \frac{a}{n}) \land [/mm] (n [mm] \vert \frac{a}{m})) [/mm] und damit auch mn [mm] \vert [/mm] a.

Super, danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]