matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraKongruenzsysteme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Algebra" - Kongruenzsysteme
Kongruenzsysteme < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kongruenzsysteme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:52 Di 22.12.2009
Autor: csak1162

Aufgabe
Löse die folgenden Kongruenzensysteme vollständig und gib jeweils auch die kleinste positive Lösung an:

x [mm] \equiv [/mm] 10 mod 11; x [mm] \equiv [/mm] 5 mod 12; x [mm] \equiv [/mm] 6 mod 13;

ich habe jetzt die r, s berechnet

r = 11* 12* 13

si= r/ri

r= 1716
s1= 156
s2= 143
s3= 132

und dann komme ich auf

k1 * 156 = 1 mod 11
k2 * 143 = 1 mod 12
k3 * 132 = 1 mod 13


aber wie komme ich da jetzt auf die k???
wie rechne ich die aus?


danke lg

        
Bezug
Kongruenzsysteme: Antwort
Status: (Antwort) fertig Status 
Datum: 10:17 Di 22.12.2009
Autor: reverend

Hallo csak,

Du hättest hier auch ansetzen können:

[mm] k_1*12*13\equiv k_1*1*2\equiv 2k_1\equiv 1\mod{11} [/mm]

[mm] k_2*11*13\equiv k_2*11*1\equiv 11k_2\equiv 1\mod{12} [/mm]

[mm] k_3*11*12\equiv k_3*(-2)*(-1)\equiv 2k_3\equiv 1\mod{13} [/mm]

Das gleiche erhältst Du natürlich auch aus Deinen Gleichungen, nehmen wir mal die erste:

[mm] k_1*156\equiv 2k_1\equiv 1\mod{11}, [/mm] da [mm] 156\equiv 2\mod{11} [/mm]

So erhältst Du [mm] k_1=6, k_2=11 [/mm] und [mm] k_3=7. [/mm]

lg
reverend

Bezug
                
Bezug
Kongruenzsysteme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:31 Di 22.12.2009
Autor: csak1162

ich erhalte als lösung

40248 + 1716 [mm] \IZ [/mm]


was ist die kleinste positive lösungsmenge???
danke lg

Bezug
                        
Bezug
Kongruenzsysteme: Antwort
Status: (Antwort) fertig Status 
Datum: 11:11 Di 22.12.2009
Autor: reverend

Hallo nochmal,

[mm] 40248\equiv 10\mod{11} [/mm]
[mm] 40248\equiv\ 0\mod{12} [/mm]
[mm] 40248\equiv\ 0\mod{13} [/mm]

Das ist offenbar keine Lösung. Außerdem ist sie ja viel zu groß. Hier müsstest Du noch [mm] 40248\mod{1716} [/mm] bestimmen.

Aber erst brauchst Du die richtige Lösung.
Was hast Du denn gerechnet?

Die kleinste positive Lösung liegt, zur Kontrolle, zwischen [mm] 21^2 [/mm] und [mm] 22^2. [/mm]

lg
reverend

Bezug
                                
Bezug
Kongruenzsysteme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:59 Di 22.12.2009
Autor: csak1162

ich habe gerechnet

k = 6 * 156 * 10 + 11 * 143 * 12 + 7 * 132 * 13 = 40284

die lösung lautet ja k + [mm] r\IZ [/mm]

r = 1716

????
was stimmt dran nicht oder was muss ich noch tun dass es stimmt???ß

danke lg

Bezug
                                        
Bezug
Kongruenzsysteme: Antwort
Status: (Antwort) fertig Status 
Datum: 12:15 Di 22.12.2009
Autor: reverend

Hallo csak,

Du sollst nicht die Moduln, sondern die Restklassen einsetzen:

> k = 6 * 156 * 10 + 11 * 143 * 12 + 7 * 132 * 13 = 40284

Im ersten Produkt hast Du das ja auch richtig gemacht.

Es ist also [mm] k=6*156*\blue{10}+11*143*\blue{5}+7*132*\blue{6}=22769 [/mm]

Weiter ist [mm] 22769\equiv 461\mod{(11*12*13)} [/mm]

...und die Lösung also [mm] 461+1716\IZ [/mm]

Klar?
lg
rev

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]