matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraKonjugationsklassen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Algebra" - Konjugationsklassen
Konjugationsklassen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konjugationsklassen: Tipps
Status: (Frage) beantwortet Status 
Datum: 18:24 So 24.06.2012
Autor: test1234

Aufgabe 1
Seien [mm] G_{1} [/mm] und [mm] G_{2} [/mm] endliche Gruppen mit je [mm] s_{1} [/mm] und [mm] s_{2} [/mm] Konjugationsklassen. Beweisen Sie, dass [mm] G_{1} \times G_{2} [/mm] genau [mm] s_{1}*s_{2} [/mm] Konjugationsklassen besitzt.

Aufgabe 2
Sei G eine endliche Gruppe der Ordnung 2n mit n ungerade. Wir bezeichnen mit X alle zweielementige Teilmengen von G und definieren g*x={gh; h [mm] \in [/mm] x}.

i) Beweisen Sie, dass #Stab(x) [mm] \le [/mm] 2 für jedes x [mm] \in [/mm] X.
ii) Schließen sie aus i) und der Bahnformel, dass G eine Untergruppe der Ordnung 2 besitzt. [ Hinweis: #X= {n [mm] \choose [/mm] k} ]

Aufgabe 3
Zeigen Sie, dass jede Gruppe der Ordnung 4 zu einer Untergruppe von [mm] D_{4} [/mm] (Diedergruppe) isomorph ist.

Zu Aufgabe 1:

Die Konjugationsoperation für das Kreuzprodukt von [mm] G_{1} [/mm] und [mm] G_{2} [/mm] müsste ja so aussehen:

[mm] (G_{1} \times G_{2}) \times (G_{1} \times G_{2}) \to G_{1} \times G_{2} [/mm] , [mm] ((g_{1},g_{2}),(x_{1},x_{2})) \mapsto (g_{1},g_{2}) (x_{1},x_{2}) (g_{1},g_{2})^-1 [/mm]


Kann ich [mm] (g_{1},g_{2}) (x_{1},x_{2}) (g_{1},g_{2})^-1 [/mm] vereinfachen indem ich alle 3 Tupel komponentenweise multiplieziere (oder ist das in diesem Fall nur eine unbekannte Verknüpfung der jeweiligen Gruppe wenn da nur xy anstatt x*y oder x+y steht?). Würde dann ja auf

[mm] (g_{1}x_{1}g_{1}^-1, g_{2}x_{2}g_{2}^-1) [/mm] hinauslaufen. Sieht iwie hilfreich aus, weil ich's dann ja [mm] G_{1} [/mm] und [mm] G_{2} [/mm] zurückführen kann, aber weiß leider nicht wie.


Zu den restlichen Aufgaben fehlt mir leider ein richtiger Ansatz. Ich hoffe ihr könnt mir ein wenig behilflich sein. :/

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konjugationsklassen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:51 Di 26.06.2012
Autor: felixf

Moin und [willkommenmr]

> Seien [mm]G_{1}[/mm] und [mm]G_{2}[/mm] endliche Gruppen mit je [mm]s_{1}[/mm] und
> [mm]s_{2}[/mm] Konjugationsklassen. Beweisen Sie, dass [mm]G_{1} \times G_{2}[/mm]
> genau [mm]s_{1}*s_{2}[/mm] Konjugationsklassen besitzt.

Ein kleiner Tipp: Wenn du nicht alles auf einmal als Frage stellst, sondern es auf mehrere (hier: drei) kleinere Fragen verteilst, erhoehst du die Chance dass das auch jemand beantwortet.

>  Zu Aufgabe 1:
>  
> Die Konjugationsoperation für das Kreuzprodukt von [mm]G_{1}[/mm]
> und [mm]G_{2}[/mm] müsste ja so aussehen:
>  
> [mm](G_{1} \times G_{2}) \times (G_{1} \times G_{2}) \to G_{1} \times G_{2}[/mm]
> , [mm]((g_{1},g_{2}),(x_{1},x_{2})) \mapsto (g_{1},g_{2}) (x_{1},x_{2}) (g_{1},g_{2})^{-1}[/mm]
>  
>
> Kann ich [mm](g_{1},g_{2}) (x_{1},x_{2}) (g_{1},g_{2})^{-1}[/mm]
> vereinfachen indem ich alle 3 Tupel komponentenweise
> multiplieziere

Ja.

> (oder ist das in diesem Fall nur eine
> unbekannte Verknüpfung der jeweiligen Gruppe wenn da nur
> xy anstatt x*y oder x+y steht?).

Ist es, aber rechnen kannst du damit trotzdem (wie mit [mm] $\cdot$). [/mm]

> Würde dann ja auf
>
> [mm](g_{1}x_{1}g_{1}^{-1}, g_{2}x_{2}g_{2}^{-1})[/mm] hinauslaufen.

Genau.

> Sieht iwie hilfreich aus, weil ich's dann ja [mm]G_{1}[/mm] und
> [mm]G_{2}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

zurückführen kann, aber weiß leider nicht wie.

Nimm dir doch ein Repraesentantensystem $S_1$ der Konjugationsklassen von $G_1$ und ein Repraesentantensystem $S_2$ der Konjugationsklassen von $G_2$. Zeige, dass $S_1 \times S_2$ ein Repraesentantensystem der Konjugationsklassen von $G_1 \times G_2$ ist.

> Zu den restlichen Aufgaben fehlt mir leider ein richtiger
> Ansatz. Ich hoffe ihr könnt mir ein wenig behilflich sein.
> :/


Zu Aufgabe 2:

>  Sei G eine endliche Gruppe der Ordnung 2n mit n ungerade.
> Wir bezeichnen mit X alle zweielementige Teilmengen von G
> und definieren g*x={gh; h [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

x}.

>  
> i) Beweisen Sie, dass #Stab(x) [mm]\le[/mm] 2 für jedes x [mm]\in[/mm] X.
>  ii) Schließen sie aus i) und der Bahnformel, dass G eine
> Untergruppe der Ordnung 2 besitzt. [ Hinweis: [mm] $\#X= \binom{n}{k}$ [/mm] ]

Sei $A = [mm] \{ a, b \} \in [/mm] X$ eine zweielementige Teilmenge von $G$ und sei $g [mm] \in [/mm] G$. Dann bedeutet $g [mm] \cdot [/mm] A = A$ doch [mm] $\{ g a, g b \} [/mm] = [mm] \{ a, b \}$. [/mm] Also muss entweder $g a = a, g b = b$ oder $g a = b, g b = a$ sein.

Was folgt daraus jeweils fuer $g$?


Zu Aufgabe 3:

>  Zeigen Sie, dass jede Gruppe der Ordnung 4 zu einer
> Untergruppe von [mm]D_{4}[/mm] (Diedergruppe) isomorph ist.

Beachte, dass [mm] $D_4 \subseteq S_4$ [/mm] auf einer Gruppe der Ordnung 4 operiert. Damit kannst du vielleicht etwas machen.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]