matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Konvergenz
Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: Aufgabe 3
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 10:22 Do 07.12.2006
Autor: doppelxchromosom

Aufgabe
Zeige das:
[mm] a_{k+1}=2a_{k}b_{k}/a_{k}+b_{k} [/mm]
monoton fallend ist, sowie beschränkt, weiter, dass
[mm] b_{k+1}=\wurzel{2a_{k}}b_{k}/\wurzel{a_{k}+b_{k}} [/mm]
monoton steigend ist, sowie beschränkt.

hallo leute!
wie gehe ich denn nun am besten an die geschichte ran?
ich habe versucht zu zeigen, dass [mm] a_{k+1}\ge a_{k+2} [/mm] für die monotonie, bekomme da aber nur ellenlange therme raus...irgendwas kann da also nicht stimmen.
bitte helft mir!!!!!
Wie zeige ich beschränktheit?

        
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:35 Do 07.12.2006
Autor: Brumm

Um zu zeigen, dass [mm] $a_{k}$ [/mm] monoton fallen ist, zeige dass [mm] $a_{k} \ge a_{k+1}$. [/mm] Also :
    [mm] $a_{k} \ge a_{k+1} [/mm] $
[mm] \gdw $a_{k} \ge \bruch{2 a_k b_k}{a_k + b_k}$ [/mm]
...

Brumm

Bezug
                
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:47 Do 07.12.2006
Autor: doppelxchromosom

ich weiß, habe ich ja auch schon versucht (siehe frage), aber ich bekomme da ziemlich lange ungleichungen raus, schaffe es irgendwie nicht die zu verkürzen, und so erkenne ich dann nichts daraus.

Bezug
                        
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:57 Do 07.12.2006
Autor: Brumm

Wenn du [mm] $a_k$ [/mm] dort stehen lässt, dann bekommst du keine ellenlangen Terme heraus ;)
Denn mit [mm] $a_k \ge \bruch{2 a_k b_k}{a_k + b_k}$ [/mm]
[mm] \gdw $a_k (a_k [/mm] + [mm] b_k) \ge [/mm] 2 [mm] a_k b_k$ [/mm]
[mm] \gdw $(a_k)^2 [/mm] - [mm] a_k b_k \ge [/mm] 0$
[mm] \gdw $a_k (a_k [/mm] - [mm] b_k) \ge [/mm] 0$
Zumindestens wenn [mm] $a_k [/mm] + [mm] b_k [/mm] > 0$.
Daher denke ich auch dass weitere Bedingungen gegeben sein müssten.

Brumm

Bezug
                                
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:12 Do 07.12.2006
Autor: doppelxchromosom

ha! nu habe ich meinen fehler gefunden....danke, klar, dann ist der weg wirklich kurz.
mehr ist zur aufgabe wirklich nicht gegeben, nur noch, dass k [mm] \in\IN, [/mm] wodurch das [mm] \ge0 [/mm] gegeben wäre.

Bezug
        
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:38 Do 07.12.2006
Autor: angela.h.b.

Hallo,

könnte es sein, daß Du Informationen über [mm] (a_k) [/mm] und [mm] (b_k) [/mm] verschweigst? Z.B. Startwerte?

Gruß v. Angela

Bezug
                
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:46 Do 07.12.2006
Autor: doppelxchromosom

nein, das ist die aufgabe, startwerte haben wir keine. sorry

Bezug
                        
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:56 Do 07.12.2006
Autor: angela.h.b.


> nein, das ist die aufgabe, startwerte haben wir keine.
> sorry

Tja, aber irgendwelche Informationen, Einschränkungen oder so muß es noch geben.

Denn so ganz allgemein gilt das nicht:

Starte ich mit [mm] a_0:=-1 [/mm] und [mm] b_0:=1, [/mm]
scheitert alles schon daran, daß [mm] a_1 [/mm] und [mm] b_1 [/mm] gar nicht definiert sind,
was weitere Untersuchungen überflüssig macht.

Gruß v. Angela

Bezug
                                
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:13 Do 07.12.2006
Autor: doppelxchromosom

ja, sorry, habe schon brumm geantwortet, also, es ist noch gegeben k [mm] \in \IN. [/mm]

Bezug
                                        
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:27 Do 07.12.2006
Autor: angela.h.b.


> ja, sorry, habe schon brumm geantwortet, also, es ist noch
> gegeben k [mm]\in \IN.[/mm]  

Nunja...
Das ist keine verwertbare Information...
Da es hier recht offensichtlich um Folgen geht, ist doch sonnenklar, daß k [mm] \in \IN [/mm] oder [mm] \in \IN_0. [/mm]
Das hat doch mit den Werten, die diese Folge annimmt, also mit den [mm] a_k, b_k [/mm] absolut nichts zu tun!

Du weißt doch, was eine Folge ist???

Gruß v. Angela





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]