matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesKonvergenz und Grenzwerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - Konvergenz und Grenzwerte
Konvergenz und Grenzwerte < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz und Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:49 So 02.12.2007
Autor: rainman_do

Aufgabe
Untersuchen Sie die angegebenen Folgen auf Konvergenz und bestimmen Sie ggf. die Grenzwerte.
a) [mm] a_n [/mm] := [mm] sin\bruch{n\pi}{10} [/mm]
b) [mm] b_n [/mm] := [mm] n^{-2}\summe_{k=1}^{n}k [/mm]
c) [mm] c_n [/mm] := [mm] \wurzel{n^4+n^2+1}-n-1 [/mm]

Hallo, ich hab leider keine Ahnung von diesen ganzen Konvergenz-Sachen und bräuchte mal eure Hilfen bei dieser Aufgabe.
Also bei der a) denke ich mal, dass das nicht konvergiert, weil sin nicht konvergiert, aber wie zeige ich das?
Bei der b) hab ich folgendes gemacht:

[mm] n^{-2}\summe_{k=1}^{n}k [/mm] = [mm] n^{-2}*\left(\bruch{n(n+1)}{2}\right) [/mm] = [mm] n^{-2}*\left(\bruch{n^2+n}{2}\right) [/mm] = [mm] \bruch{n^{-2}*(n^2+n)}{2} [/mm] = [mm] \bruch{n^{0}+n^{-1}}{2} [/mm] = [mm] \bruch{1+\bruch{1}{n}}{2} [/mm] = [mm] \bruch{1+0}{2} [/mm] = [mm] \bruch{1}{2} [/mm]

reicht das so, oder muss man noch da noch mehr zu schreiben? bzw. stimmt das überhaupt?

Zu c)
[mm] \wurzel{n^4+n^2+1}-n-1 [/mm] multipliziert mit [mm] \bruch{\wurzel{n^4+n^2+1}+n+1}{\wurzel{n^4+n^2+1}+n+1} [/mm] ergibt
[mm] \bruch{(n^4+n^2+1)-n^4-2n^2-1}{\wurzel{n^4+n^2+1}+n+1} [/mm] = [mm] -\bruch{n^2}{\wurzel{n^4+n^2+1}+n+1} [/mm] jetzt durch [mm] n^2 [/mm] kürzen ergibt
- [mm] \bruch{1}{\wurzel{1+\bruch{1}{n^2}+\bruch{1}{n^4}}+1+\bruch{1}{n^2}} [/mm] = [mm] -\bruch{1}{\wurzel{1+0+0}+1+0} [/mm] = [mm] -\bruch{1}{\wurzel{1}+1} [/mm] = [mm] -\bruch{1}{2} [/mm]

Auch hier wieder die gleichen Fragen wie bei b)
Ich sag schon mal besten Dank im Voraus.


        
Bezug
Konvergenz und Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 21:28 So 02.12.2007
Autor: leduart

Hallo
zu a) was soll das heissen sin konvergiert nicht die Folge sin(x/n) konvergiert!
die Folge [mm] sin(2n*\pi) [/mm] auch.
Du musst schon genauer sagen für n gerade, für durch 10 teilbar , für n nicht durch 10 aber durch 5 teilbar usw.
zu b) im Prinzip richtig, aber deine = Zeichen sind falsch!
$ [mm] \bruch{1+\bruch{1}{n}}{2} [/mm] $ = $ [mm] \bruch{1+0}{2} [/mm] $ kann man nicht schreiben wenn nicht [mm] \limes_{n\rightarrow\infty} [/mm]  davor steht.
in c) hast du nen Rechenfehler, [mm] (n+1)^2=n^2+2n+1 [/mm] keinerlei [mm] n^4! [/mm]
Da die wurzel > als [mm] n^2 [/mm] ist ist auch einfach zu sehen, dass das divergiert, weil [mm] n^2-n-1 [/mm] divergiert!
Gruss leduart

Bezug
                
Bezug
Konvergenz und Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:58 So 02.12.2007
Autor: rainman_do

Hallo, danke für die Antwort und entschuldige mein Unwissen, hab quasi grad erst angefangen mit diesen ganzen Konvergenz-Geschichten. Also bei a) versteh ich leider immernoch nicht wie ich sowas aufschreiben soll, also für gerade n würde das konvergieren und für ungerade n nicht. Aber was mach ich mit der 10?
Bei der c) ist mir ein schwerwiegender Fehler unterlaufen, ich hab bei der Aufgabe ein [mm] n^2 [/mm] vergessen, richtig müsste es heissen:

[mm] c_n:= \wurzel{n^4+n^2+1}-n^2-1, [/mm] dann das ganze multipliziert mit [mm] \bruch{\wurzel{n^4+n^2+1}+n^2+1}{\wurzel{n^4+n^2+1}+n^2+1} [/mm]

ergibt [mm] \bruch{n^4+n^2+1-n^4-2n^2-1}{\wurzel{n^4+n^2+1}+n^2+1} [/mm] = [mm] -\bruch{n^2}{\wurzel{n^4+n^2+1}+n^2+1} [/mm] dann kürzen
[mm] \limes_{n\rightarrow\infty}\bruch{-1}{\wurzel{1+\bruch{1}{n^2}+\bruch{1}{n^4}}+1+\bruch{1}{n^2}} [/mm] = [mm] \bruch{-1}{\wurzel{1+0+0}+1+0} [/mm] = [mm] -\bruch{1}{2} [/mm]

Ich hoffe jetzt stimmts, sorry

Bezug
                        
Bezug
Konvergenz und Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 22:22 So 02.12.2007
Autor: leduart

Hallo
c) ist damit richtig.
zu a: für jedes durch 10 teilbare n ist sin..=0  für jedes ungerade ,durch 5 teilbare n ist es 1 oder -1, für andere Werte dazwischen wieder andere Werte. d.h. die Folge alterniert zwischen mehreren Werten auch für beliebig große n, d,h, sie konvergiert nicht.
(dafür reicht auch dass sie sicher immer wieder 0 und 1 erreicht!)
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]