matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieKonvergenz uneigentl. Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integrationstheorie" - Konvergenz uneigentl. Integral
Konvergenz uneigentl. Integral < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz uneigentl. Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:26 Mo 18.06.2012
Autor: Peao

Aufgabe
Konvergiert [mm] \integral_{-\pi/2}^{0}{\bruch{(cos(x)sin(x))^{2}}{x^{2}} dx} [/mm]

Hallo!

ich habe hier zunächst den Zähler mit der binomischen Formel umgeformt:

1-2sin(x)cos(x) Das wird maximal 2.

Habe nun versucht eine integrierbare Majorante zufinden, allerdings stört das [mm] x^{2} [/mm] im Nenner. Ich finde keine Möglichkeit die Nullstelle zu umgehen.

Hat jemand einen Tip, wie ich hier ansetzen kann?

        
Bezug
Konvergenz uneigentl. Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 18:06 Mo 18.06.2012
Autor: Leopold_Gast

Das Integral ist im engeren Sinn gar nicht uneigentlich. Bekanntermaßen ist [mm]\frac{\sin x}{x}[/mm] bei [mm]x=0[/mm] mit dem Wert 1 stetig ergänzbar. Und wenn man quadriert ...

Bezug
                
Bezug
Konvergenz uneigentl. Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:33 Mo 18.06.2012
Autor: Peao


> Das Integral ist im engeren Sinn gar nicht uneigentlich.
> Bekanntermaßen ist [mm]\frac{\sin x}{x}[/mm] bei [mm]x=0[/mm] mit dem Wert 1
> stetig ergänzbar. Und wenn man quadriert ...

Leider sehe ich hier nicht, wie mich das weiterbringen könnte. Das man das stetig ergänzen kann, ist mir klar.

Das so das Integral von [mm] \bruch{sin(x)}{x} [/mm]  berechnet werden kann, da der Flächeninhalt endlich wird leuchtet mir auch ein. Nur hätte ich schon Probleme [mm] \bruch{sin(x)}{x} [/mm] zu integrieren.

Und wie mich das auf eine Lösung für meine Aufgabe bringt, erschließt sich mir auch noch nicht.

Gruß



Bezug
                        
Bezug
Konvergenz uneigentl. Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 Mo 18.06.2012
Autor: Leopold_Gast

Die Aufgabe ist bereits gelöst. Da der Integrand (mit der stetigen Ergänzung) stetig ist, existiert das Integral. Das war's.

Bezug
                                
Bezug
Konvergenz uneigentl. Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:51 Mo 18.06.2012
Autor: Peao

Danke!
So habe ich das noch gar nicht betrachtet, dass man einfach die Stetigkeit des Integranden zeigt und nicht eine Grenzwertbetrachtung anstellt....

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]