matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisKonvergenz von Folgen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Konvergenz von Folgen
Konvergenz von Folgen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von Folgen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:19 Di 15.11.2005
Autor: Totobi

Kann mir bitte jemand bei der folgenden Aufgabe helfen. Bekomme die einfach nicht hin.

Mit einer beliebigen positiven Zahl ainIR definiert man die drei Folgen (an), (bn) und (cn) durch:
[mm] an=\wurzel{n+a}-\wurzel{n}, bn=\wurzel{n+\wurzel{n}}-\wurzel{n}, [/mm]
[mm] cn=\wurzel{n+ \bruch{n}{a}}- \wurzel{n} [/mm]

Zeigen Sie, dass für alle [mm] n
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
[Hier gibst du bitte die direkten Links zu diesen Fragen an.]


        
Bezug
Konvergenz von Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:49 Di 15.11.2005
Autor: angela.h.b.


> Kann mir bitte jemand bei der folgenden Aufgabe helfen.
> Bekomme die einfach nicht hin.

Hallo,

schade, daß Du nicht zeigst, bis wo Du gekommen bist.
Dann könnte ich Dir konkret helfen.

So kann ich leider nur recht allgemein etwas sagen.

>  
> Mit einer beliebigen positiven Zahl a [mm] \in \IR [/mm] definiert man die
> drei Folgen [mm] (a_n), (b_n) [/mm] und [mm] (c_n) [/mm] durch:
>  [mm]a_n=\wurzel{n+a}-\wurzel{n}, b_n=\wurzel{n+\wurzel{n}}-\wurzel{n},[/mm]
>  
> [mm]c_n=\wurzel{n+ \bruch{n}{a}}- \wurzel{n}[/mm]
>  
> Zeigen Sie, dass für alle [mm]n
> [mm] a_n>b_n>c_n [/mm] gilt, jedoch [mm] a_n[/mm]  [mm]\to0,[/mm] [mm] b_n[/mm]  [mm]\to \bruch{1}{2}[/mm] und [mm] c_n [/mm]
> [mm]\to \infty.[/mm]

Dies ist ein Spiel mit der Bedingung n < [mm] a^2. [/mm] Es ist deswegen [mm] \wurzel{n} [/mm] < a  (a ist ja positiv), und daher kriegt man
[mm] a_n=\wurzel{n+a}-\wurzel{n}> \wurzel{n+\wurzel{n}}-\wurzel{n}=b_n [/mm] ...

>jedoch [mm] a_n[/mm]  [mm]\to0,[/mm] [mm] b_n[/mm]  [mm]\to \bruch{1}{2}[/mm] und [mm] c_n [/mm]

> [mm]\to \infty.[/mm]

Hier lohnt es sich, daß Du kurz innehältst und Dich fragst: muß ich mich wundern?
Zuerst die Abschätzung da oben, und die Grenzwerte sollen plötzlich "andersrum" sein?

Wenn Dir klar geworden ist, warum das kein Widerspruch und kein Grund zum Wundern ist, fang an.

Was mußt Du zeigen, wenn Du z.B. zeigen willst, daß [mm] a_n [/mm] gegen 0 konvergiert?

Daß Du zu vorgegebenem [mm] \varepsilon [/mm] >0 ein N [mm] \in \IN [/mm] findest mit
[mm] |a_n-0| [/mm] < [mm] \varepsilon [/mm]  für alle n [mm] \ge [/mm] N.

So, nachdem geklärt ist, was zu tun ist, kannst Du ja anfangen.
Wenn Du nicht weiterkommst, melde Dich nochmal.

Gruß v. Angela

>  
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
>  [Hier gibst du bitte die direkten Links zu diesen Fragen
> an.]
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]