matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenKonvergenz von Funktionenfolge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Konvergenz von Funktionenfolge
Konvergenz von Funktionenfolge < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von Funktionenfolge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:32 Do 28.06.2007
Autor: HoaX

Aufgabe
Es bezeichne B := { [mm] {X\in \IR^m : ||X|| \le 1} [/mm] } die Einheitskugel im  [mm] \IR^m [/mm] und { [mm] f_n [/mm] } n [mm] \in \IN [/mm] eine Folge von Funktionen, gegeben durch
[mm] f_n [/mm] : [mm] B\to \IR, [/mm] f(X) = [mm] ||X||^n [/mm]
Untersuchen Sie, ob die gegebene Folge von Funktionen punktweise oder sogar gleichmäßig konvergent ist. Geben Sie gegebenenfalls auch die jeweils resultierende Grenzfunktion an

Habe schon ähnliche Aufgaben zu denen ich die Lösungen habe durchgearbeitet und zwar nur schwerlich verstanden, aber anhand des gleichbleibenden Schemas nachvollziehen können. Allerdings waren diese immer in der Form zB
Für n [mm] \ge [/mm] 2 sei [mm] f_n [/mm] : [mm] [0,1]\to \IR [/mm] definiert durch [mm] f_n(x)=\begin{cases} n^2x, & \mbox{für } x \in [0, 1/n] \\ 2n-n^2x, & \mbox{für } x \in [1/n, 2/n] \\ 0, & \mbox{für } x \in [2/n, 1] \end{cases} [/mm]

Die vorliegende Aufgabe überfordert mich leider derart, dass ich momentan nicht einmal einen vernünftigen Ansatz hinbekomme - würde mich freuen, wenn mir jemand die Aufgabe erklären könnte

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenz von Funktionenfolge: Antwort zur pkt. Konvergenz
Status: (Antwort) fertig Status 
Datum: 21:17 Do 28.06.2007
Autor: bellybutton

Guck' doch mal Hoax,

die x Werte der fn kommem aus B, in B ist aber gerade die Norm von X immer kleiner gleich 1. Dies heisst also, dass dann [mm] \parallel [/mm] X [mm] \parallel^n [/mm] auch immer kleiner gleich 1 sein muss. Es gilt somit für jedes X (und für n [mm] \to \infty [/mm] ):

fn(x) [mm] \to [/mm] 0 [mm] \forall [/mm] x < 1 und
fn(x) [mm] \to [/mm] 1 für x =1. Die Grenzfunktion lautet also:

[mm] f(n)=\begin{cases} 0, & \mbox{für } x<1 \\ 1, & \mbox{für } x =1 \end{cases}. [/mm]
Die Folge fn konvergiert also punktweise (hängt ja von der speziellen Wahl von x ab), gleichmäßig konvergiert sie nur auf [mm] B'={X:\parallel X \parallel <1}. [/mm]

Bezug
        
Bezug
Konvergenz von Funktionenfolge: Antwort zur pkt. Konvergenz
Status: (Antwort) fertig Status 
Datum: 21:19 Do 28.06.2007
Autor: bellybutton

Guck' doch mal Hoax,

die x Werte der fn kommem aus B, in B ist aber gerade die Norm von X immer kleiner gleich 1. Dies heisst also, dass dann [mm] \parallel [/mm] X [mm] \parallel^n [/mm] auch immer kleiner gleich 1 sein muss. Es gilt somit für jedes X (und für n [mm] \to \infty [/mm] ):

fn(x) [mm] \to [/mm] 0 [mm] \forall [/mm] x < 1 und
fn(x) [mm] \to [/mm] 1 für x =1. Die Grenzfunktion lautet also:

[mm] f(x)=\begin{cases} 0, & \mbox{für } x<1 \\ 1, & \mbox{für } x =1 \end{cases}. [/mm]
Die Folge fn konvergiert also punktweise (hängt ja von der speziellen Wahl von x ab), gleichmäßig konvergiert sie nur auf [mm] B'=\{X:\parallel X \parallel <1\}. [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]