matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenzbestimmung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Konvergenzbestimmung
Konvergenzbestimmung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzbestimmung: Korrektur
Status: (Frage) beantwortet Status 
Datum: 14:16 Do 29.05.2008
Autor: kam

Aufgabe
Untersuchen Sie die folgende Reihe auf Konvergenz bzw.
Divergenz. Ist die Reihe konvergent, so bestimmen Sie den Grenzwert.

1+0,4+0,16+0,064+...

Hallo zusammen

Hab die Aufgabe mal reingestellt, da ich etwas verwirrt bin. vllt kann mir da ja einer von euch nen Tipp geben.

Also ich habe die obige Aufgabe in die Folge Reihe umgewandelt:

[mm] \summe_{n=0}^{\infty} \left(\bruch{2}{5}\right)^n [/mm]

Wenn ich dann den Summengrenzwert bestimme komm ich auf
[mm] s=\bruch{2}{3} [/mm] (mit [mm] a_0=\bruch{2}{5} [/mm] und [mm] q=\bruch{2}{5}) [/mm]

Wenn ich die Aufgabe aber zur Kontrolle in mein Matheprogramm eingebe erhalte ich für
[mm] \summe_{n=0}^{\infty} \left(\bruch{2}{5}\right)^n=\bruch{5}{3} [/mm]

und auf mein Ergebnis komme ich nur, wenn ich mit in dem Programm

[mm] \summe_{n=1}^{\infty} \left(\bruch{2}{5}\right)^n [/mm]
verwende.

Das bringt mich nun ein wenig durcheinander. Hab ich in meiner Rechnung was übersehen oder wie kommt das zustande.

Bin für jede Hilfe dankbar...

Gruß kam

        
Bezug
Konvergenzbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:23 Do 29.05.2008
Autor: blascowitz

Guten Tach,
also offensichtlich ist das eine Geometrische Reihe.
Deren Grenzwert errechnet sich bekanntlich durch
[mm] \sum_{n=0}^{\infty}q^{n}=\bruch{1}{1-q} [/mm] für $|q|<1$. Dann ergibt sich als grenzwert mit [mm] q=\bruch{2}{5} [/mm] und [mm] a_{0}=1 [/mm] der Grenzwert [mm] \bruch{5}{3}. [/mm] Poste mal was du gerechnet hast, damit wir den fehler suchen können

Bezug
                
Bezug
Konvergenzbestimmung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:39 Do 29.05.2008
Autor: kam

Danke für die schnelle Antwort. Ich glaub ich hab den Fehler schon gefunden. Habe mit [mm] a_0=\bruch{2}{5} [/mm] und nicht mit [mm] a_0=1 [/mm] gerechnet Aber hier mein Rechenweg:

[mm] \summe_{n=0}^{\infty} \left(\bruch{2}{5}\right)^n=\summe_{n=0}^{\infty} \left(\bruch{2}{5}\right)^1* \left(\bruch{2}{5}\right)^{n-1} [/mm]

Damit war für mich [mm] a_0=\bruch{2}{5} [/mm] und [mm] q=\bruch{2}{5} [/mm]

[mm] s=\left(\bruch{\bruch{2}{5}}{1-\bruch{2}{5}}\right)=\bruch{2}{3} [/mm]


Ich denke da lag der Fehler...

Bezug
                        
Bezug
Konvergenzbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:45 Do 29.05.2008
Autor: blascowitz

das wird es gewesen sein^^

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]