matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenzradius Potenzreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Konvergenzradius Potenzreihe
Konvergenzradius Potenzreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:11 Fr 18.06.2010
Autor: zim_georg

Aufgabe
Beweise: Die Potenzreihe [mm] \summe_{n=0}^{\infty}a_{n}x^{n} [/mm] habe den Konvergenzradius R. Dann gilt: Die Potenzreihe [mm] \summe_{n=0}^{\infty}\bruch{a_{n}}{n+1}x^{n+1} [/mm] hat ebenfalls Konvergenzradius R.

Hallo Leute!

Ich bin wie folgt an die Lösung des Problems gegangen: Ich habe den Limes von [mm] \wurzel[n]{\bruch{a_{n}}{n+1}} [/mm] betrachtet. Da [mm] \limes_{n\rightarrow\infty}\wurzel[n]{n+1}=1 [/mm] ist, wäre ich eigentlich schon fast fertig, nur habe ich noch folgendes Problem: In der Potenzreihe [mm] \summe_{n=0}^{\infty}\bruch{a_{n}}{n+1}x^{n+1} [/mm] kommt ja [mm] x^{n+1} [/mm] vor (und nicht [mm] x^{n}). [/mm] Daher bin ich mir nicht sicher, ob ich die Formel zur Berechnung des Konvergenzradius, also R =  [mm] \bruch{1}{lim sup \wurzel[n]{|a_{n}|}} [/mm] verwenden darf, so wie ich das im Beweis gemacht habe... es ist ja irgendwie naheliegend, dass eine Reihe mit [mm] x^{n} [/mm] dasselbe Konvergenzverhalten haben muss wie eine mit [mm] x^{n+1}, [/mm] man könnte ja vielleicht [mm] x^{n+1} [/mm] in [mm] x^{n}*x [/mm] aufteilen, und das x wäre dann ein "konstanter Faktor". Alternativ könnte man sich vielleicht sogar schon im Beweis des Konvergenzsatzes für Potenzreihen (= die oben zitierte Formel für R) überlegen, dass es egal ist, ob man [mm] x^{n} [/mm] oder [mm] x^{n+1} [/mm] verwendet. Aber andererseits bin ich mir irgendwie nicht ganz sicher, ob man das [mm] x^{n+1} [/mm] tatsächlich wie oben beschrieben zerlegen und x als "konstanten Faktor" auffassen darf... vielleicht habe ich auch zu viel Respekt vor dem x, ich weiß es nicht... ;-) Aber irgendwie sieht die Beweisidee ja nicht schlecht aus, nur bei der genauen Argumentation mit dem [mm] x^{n+1} [/mm] bin ich mir eben noch nicht ganz sicher.

danke im Voraus für eure Hilfe,
lg Georg

        
Bezug
Konvergenzradius Potenzreihe: zerlegen
Status: (Antwort) fertig Status 
Datum: 11:24 Fr 18.06.2010
Autor: Roadrunner

Hallo Georg!


Dein Ansatz mit [mm] $x^{n+1} [/mm] \ = \ [mm] x*x^n$ [/mm] ist sehr gut. [ok]


Gruß vom
Roadrunner


Bezug
                
Bezug
Konvergenzradius Potenzreihe: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:45 Fr 18.06.2010
Autor: zim_georg

Hallo Roadrunner!

Danke für deine Antwort, dann war ich also doch auf dem richtigen Weg ;-)

lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]