matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenzverhalten von Reihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Konvergenzverhalten von Reihen
Konvergenzverhalten von Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzverhalten von Reihen: unendliche Reihen
Status: (Frage) beantwortet Status 
Datum: 13:08 Do 09.12.2004
Autor: shifty

Hallo,

ich habe mal eine Frage, wer weiss die Lösung zu dieser Aufgabe, ich poste mal den Link, dann erspare ich mir die für den Anfänger hier doch etwas schwere Eingabe:

[Dateianhang nicht öffentlich]

Muss man dort die Grenzwerte herausfinden, oder sehe ich das falsch?

Wäre nett, wenn mir da einer hilft!

Gruß shifty

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Konvergenzverhalten von Reihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:03 Do 09.12.2004
Autor: Palin

Ok hier findes du hinweise zur Konvergenz
http://de.wikipedia.org/wiki/Konvergenz_(Mathematik)
und hier zu den Reihen
http://de.wikipedia.org/wiki/Reihe_(Mathematik)#Konvergenzkriterien.

Ich hoffe das hilft erstmal weiter.



Bezug
        
Bezug
Konvergenzverhalten von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:25 Fr 10.12.2004
Autor: Siegfried

Hallo Shifty, ja, man soll die Grenzwerte herausfinden. Bei Aufgabe a z.B. könnte man sich folgendes überlegen:

[mm] \summe_{i=0}^{n} [/mm] = 1 -1/2 + 1/4 - 1/8 + 1/16 - 1/32 ...usw.
Für 1/2 + 1/4 - 1/8 + 1/16 bekommen wir -5/16 > -1/3;
für 1/2 + 1/4 - 1/8 + 1/16 - 1/32 bekommt man -11/32 < -1/3;
für 1/2 + 1/4 - 1/8 + 1/16 - 1/32 + 1/64 bekommt man -21/64 > -1/3 usw. Wir nähern uns also von rechts und links der Zahl -1/3. Dazu kommt noch die 1 von k=0, also
[mm] \limes_{n\rightarrow\infty}\summe_{k=0}^{ \infty}(-1/2)^k [/mm] =2/3.

Viel Spass, Siegfried.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]