matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergiert die Folge
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Konvergiert die Folge
Konvergiert die Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergiert die Folge: Beweis oder Gegenbeispiel...
Status: (Frage) beantwortet Status 
Datum: 22:33 So 25.11.2007
Autor: Physiker

Aufgabe
Sei  [mm] (a_n)_{n \in \IN} [/mm] eine Folge mit der Eigenschaft, dass [mm] (a_{2n})_{n \in \IN}, (a_{2n+1})_{n \in \IN} [/mm] und [mm] (a_{3n})_{n \in \IN} [/mm] konvergieren. Konvergiert dann auch [mm] (a_n)_{n \in \IN}? [/mm] (Beweis oder Gegenbeispiel)

Ich habe diese Frage noch in keinem Anderen Forum gepostet.

Vom Gefühl her würde ich sagen: Ja. Das sind ja alles Natürliche Zahlen... Was bedeutet, dass ich n ja durchaus auch die größe von 2n haben könnte. WArum sollte also die Folge mit einem niedirgereren Wert eingesetzt nicht mehr konvergieren?

Aber wie genau mache ich hier den Beweis?  Ich müsste das doch nur in Formelschrift pressen...  Kann mir wer helfen? (Schande über mich, sitze wieder zu spät am Mathezettel.... (^_^")



        
Bezug
Konvergiert die Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 22:55 So 25.11.2007
Autor: MatthiasKr

Hallo,
> Sei  [mm](a_n)_{n \in \IN}[/mm] eine Folge mit der Eigenschaft, dass
> [mm](a_{2n})_{n \in \IN}, (a_{2n+1})_{n \in \IN}[/mm] und
> [mm](a_{3n})_{n \in \IN}[/mm] konvergieren. Konvergiert dann auch
> [mm](a_n)_{n \in \IN}?[/mm] (Beweis oder Gegenbeispiel)
>  Ich habe diese Frage noch in keinem Anderen Forum
> gepostet.
>  
> Vom Gefühl her würde ich sagen: Ja. Das sind ja alles
> Natürliche Zahlen... Was bedeutet, dass ich n ja durchaus
> auch die größe von 2n haben könnte. WArum sollte also die
> Folge mit einem niedirgereren Wert eingesetzt nicht mehr
> konvergieren?
>  

mache dir klar, was die voraussetzungen genau bedeuten: wenn du alle geraden folgeglieder (also folgeglieder mit geradem index) nimmst, konvergiert diese folge. Genauso mit den ungeraden.
Aber: das alleine reicht noch NICHT! nimm das simple beispiel [mm] $a_k=(-1)^k$. [/mm]
die dritte voraussetzung sagt aber, das die folge in 3er-schritten auch konvergiert.  was heisst das? ab einem bestimmten [mm] $n_0$ [/mm] befinden sich fast alle folgeglieder [mm] $a_{3n}$ [/mm] in einer beliebig kleinen umgebung des grenzwertes. Wie viele gerade folgeglieder sind darunter? Und wieviele ungerade? was heisst das aber?

so solltest du zu deiner antwort kommen.

gruss
matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]