matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeKreise im Koordinatensystem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Gleichungssysteme" - Kreise im Koordinatensystem
Kreise im Koordinatensystem < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreise im Koordinatensystem: Lage und Mittelpunktbestimmung
Status: (Frage) beantwortet Status 
Datum: 13:30 So 21.10.2007
Autor: Spion4ik

Aufgabe
Seite 25 / Nr. 4

Welche Lage hat der Punkt P bezüglich des Kreises k?

a) P (0|0) ; k: x² + y² + 4x - 6y + 4 = 0

Ich hab jetzt das problem, dass ich nicht wirklich verstehe ob ich die Punkte vom Punkt P irgendwo in die Formel einsetzen muss oder nicht.
Und wie ich jetzt die Lage des punktes bezüglich des Kreises bestimmen kann, bräuchte nur einmal eine Erklärung und Vorrechnung um zu verstehn, dann kann ich auch die restlichen 3 Aufgaben alleine schaffen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kreise im Koordinatensystem: Antwort
Status: (Antwort) fertig Status 
Datum: 13:37 So 21.10.2007
Autor: leduart

Hallo
Wenn du deine Kreisgleichung (durch quadratische Ergänzung) auf die Form [mm] (x-x_m)^2+(y-y_m)^2=r^2 [/mm] bringst kennst du Mittelpunkt und Radius.
jetz errechnest du den Abstand des Mittelpunktes von P, wenn der kleiner r ist liegt der Punkt inerhalb, größer ausserhalb, gleich auf dem Kreis.
Gruss leduart

Bezug
                
Bezug
Kreise im Koordinatensystem: Und wie?
Status: (Frage) beantwortet Status 
Datum: 13:48 So 21.10.2007
Autor: Spion4ik

Und wie bring ich meine Gleichung in diese Form?
Alles was mit Gleichungen zu tun hat ist für mich nicht zu verstehn ohne Beispiel, mit Buchstaben bringt mir ne Antwort nichts, ich brauche Zahlen um das zu verstehn.

Bezug
                        
Bezug
Kreise im Koordinatensystem: Antwort
Status: (Antwort) fertig Status 
Datum: 14:15 So 21.10.2007
Autor: koepper

Hallo Spion,

[mm] $x^2 [/mm] + [mm] y^2 [/mm] + 4x - 6y + 4 = 0$
[mm] $\Leftrightarrow x^2 [/mm] + 4x + 4 - 4 + [mm] y^2 [/mm] - 6y + 9 - 9 + 4 = 0$   (+4 -4 bzw +9 -9 ist die quadratische Ergänzung)
[mm] $\Leftrightarrow [/mm] (x + [mm] 2)^2 [/mm] - 4 + (y - [mm] 3)^2 [/mm] - 9 + 4 = 0$
[mm] $\Leftrightarrow [/mm] (x + [mm] 2)^2 [/mm] + (y - [mm] 3)^2 [/mm] = 9$

Der Mittelpunkt ist also M(-2 | 3) der Radius $r = [mm] \sqrt{9} [/mm] = 3.$

Berechne nun den Abstand des Mittelpunktes von dem hier in Frage stehenden Punkt (Ursprung).

Wenn der Abstand kleiner als der Radius ist, liegt der Punkt offenbar im Kreis, u.s.w.

war das verständlich?

Gruß
Will

Bezug
                                
Bezug
Kreise im Koordinatensystem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:19 So 21.10.2007
Autor: Spion4ik

Ja, danke, dass war jetzt verständlicher und auch eine genauere Antwort auf die eigentliche Frage.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]